FUNDED_NISL:FUNDED是用于构建漏洞检测模型的新颖学习框架

上传者: 42099942 | 上传时间: 2022-03-25 15:23:29 | 文件大小: 93.95MB | 文件类型: -
资金 使用图神经网络和开源资源库检测代码漏洞。这是模型中描述的实现: ,, , ,,,,李立变和,“将基于图的学​​习与自动数据收集相结合以检测代码漏洞” 。 FUNDED是用于构建漏洞检测模型的新颖学习框架,该框架利用图神经网络(GNN)的进步来开发一种新颖的基于图的学​​习方法,以捕获并推理程序的控制,数据和调用依赖性。 2020年11月-该论文被接受! 在线工具和更多数据集可在我们的。 内容 入门 这些说明将为您提供在本地计算机上运行并运行的项目的副本,以进行开发和测试。 先决条件 在运行项目之前安装必要的依赖项,SoftWare的一部分与数据预处理有关,而Python库是我们已经测试过的环境。有关更多详细信息,请参考requirements.txt: 软件: Python库: 设置 本节提供了使项目运行的步骤,解释和示例。 1)克隆此仓库 $ git clone git

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明