DCRNN:Tensorflow中扩散卷积循环神经网络的实现

上传者: 42098104 | 上传时间: 2024-01-07 22:17:19 | 文件大小: 10.14MB | 文件类型: ZIP
扩散卷积循环神经网络:数据驱动的交通预测 这是以下论文中Diffusion Convolutional Recurrent Neural Network的TensorFlow实现: Yaguang Li、Rose Yu、Cyrus Shahabi、Yan Liu,,ICLR 2018。 要求 scipy>=0.19.0 numpy>=1.12.1 熊猫>=0.19.2 皮亚尔 统计模型 张量流>=1.3.0 可以使用以下命令安装依赖项: pip install -r requirements.txt 数据准备 洛杉矶(METR-LA)和湾区(PEMS-BAY)的交通数据文件,即metr-la.h5和pems-bay.h5 ,可以在或,需要放入data/文件夹。 *.h5文件使用HDF5文件格式将数据存储在panads.DataFrame 。 下面是一个例子: 传感器_0 传

文件下载

资源详情

[{"title":"( 37 个子文件 10.14MB ) DCRNN:Tensorflow中扩散卷积循环神经网络的实现","children":[{"title":"DCRNN-master","children":[{"title":".gitignore <span style='color:#111;'> 1.14KB </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 79B </span>","children":null,"spread":false},{"title":"data","children":[{"title":"model","children":[{"title":"dcrnn_bay.yaml <span style='color:#111;'> 708B </span>","children":null,"spread":false},{"title":"pretrained","children":[{"title":"PEMS-BAY","children":[{"title":"events.out.tfevents.1547170277.kakarot <span style='color:#111;'> 1.95KB </span>","children":null,"spread":false},{"title":"models-1.6139-30780.index <span style='color:#111;'> 2.19KB </span>","children":null,"spread":false},{"title":"models-1.6139-30780.data-00000-of-00001 <span style='color:#111;'> 4.26MB </span>","children":null,"spread":false},{"title":"config.yaml <span style='color:#111;'> 828B </span>","children":null,"spread":false}],"spread":true},{"title":"METR-LA","children":[{"title":"models-2.7422-24375.index <span style='color:#111;'> 2.19KB </span>","children":null,"spread":false},{"title":"models-2.7422-24375.data-00000-of-00001 <span style='color:#111;'> 4.26MB </span>","children":null,"spread":false},{"title":"config.yaml <span style='color:#111;'> 799B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"dcrnn_la.yaml <span style='color:#111;'> 701B </span>","children":null,"spread":false},{"title":"dcrnn_test_config.yaml <span style='color:#111;'> 701B </span>","children":null,"spread":false}],"spread":true},{"title":"sensor_graph","children":[{"title":"distances_bay_2017.csv <span style='color:#111;'> 171.65KB </span>","children":null,"spread":false},{"title":"adj_mx_bay.pkl <span style='color:#111;'> 1.60MB </span>","children":null,"spread":false},{"title":"graph_sensor_locations_bay.csv <span style='color:#111;'> 9.52KB </span>","children":null,"spread":false},{"title":"graph_sensor_locations.csv <span style='color:#111;'> 6.19KB </span>","children":null,"spread":false},{"title":"distances_la_2012.csv <span style='color:#111;'> 6.10MB </span>","children":null,"spread":false},{"title":"adj_mx.pkl <span style='color:#111;'> 664.51KB </span>","children":null,"spread":false},{"title":"graph_sensor_ids.txt <span style='color:#111;'> 1.41KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"model","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"dcrnn_cell.py <span style='color:#111;'> 7.83KB </span>","children":null,"spread":false},{"title":"dcrnn_model.py <span style='color:#111;'> 4.86KB </span>","children":null,"spread":false},{"title":"dcrnn_supervisor.py <span style='color:#111;'> 13.21KB </span>","children":null,"spread":false}],"spread":true},{"title":"dcrnn_train.py <span style='color:#111;'> 1.21KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"scripts","children":[{"title":"generate_training_data.py <span style='color:#111;'> 3.93KB </span>","children":null,"spread":false},{"title":"gen_adj_mx.py <span style='color:#111;'> 2.77KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"eval_baseline_methods.py <span style='color:#111;'> 5.89KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 7.40KB </span>","children":null,"spread":false},{"title":"lib","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"AMSGrad.py <span style='color:#111;'> 7.68KB </span>","children":null,"spread":false},{"title":"metrics_test.py <span style='color:#111;'> 5.99KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 7.11KB </span>","children":null,"spread":false},{"title":"metrics.py <span style='color:#111;'> 4.27KB </span>","children":null,"spread":false}],"spread":true},{"title":"figures","children":[{"title":"model_architecture.jpg <span style='color:#111;'> 752.38KB </span>","children":null,"spread":false}],"spread":true},{"title":"run_demo.py <span style='color:#111;'> 1.39KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明