gru-svm.rar

上传者: 40651515 | 上传时间: 2021-07-12 11:06:38 | 文件大小: 11.19MB | 文件类型: RAR
一种结合门控循环单元 (GRU) 和支持向量机 (SVM) 的神经网络架构,用于网络流量入侵检测(GRU-SVM模型)

文件下载

资源详情

[{"title":"( 58 个子文件 11.19MB ) gru-svm.rar","children":[{"title":"gru-svm","children":[{"title":"figures","children":[{"title":"optimal-hyperplane.png <span style='color:#111;'> 7.81KB </span>","children":null,"spread":false},{"title":"training_accuracy.png <span style='color:#111;'> 354.00KB </span>","children":null,"spread":false},{"title":"gru-svm.png <span style='color:#111;'> 56.26KB </span>","children":null,"spread":false},{"title":"gru-svm-expanded.png <span style='color:#111;'> 48.44KB </span>","children":null,"spread":false},{"title":"svm.png <span style='color:#111;'> 8.71KB </span>","children":null,"spread":false},{"title":"testing_accuracy.png <span style='color:#111;'> 221.01KB </span>","children":null,"spread":false},{"title":"gru.png <span style='color:#111;'> 92.53KB </span>","children":null,"spread":false},{"title":"l2-svm.png <span style='color:#111;'> 2.18KB </span>","children":null,"spread":false},{"title":"esn-svm.png <span style='color:#111;'> 568.05KB </span>","children":null,"spread":false},{"title":"ann.jpg <span style='color:#111;'> 46.48KB </span>","children":null,"spread":false},{"title":"rnn-lstm.png <span style='color:#111;'> 224.30KB </span>","children":null,"spread":false},{"title":"data.png <span style='color:#111;'> 6.39KB </span>","children":null,"spread":false}],"spread":false},{"title":"gru_softmax_main.py <span style='color:#111;'> 5.77KB </span>","children":null,"spread":false},{"title":"gru_svm_main.py <span style='color:#111;'> 5.78KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 33.79KB </span>","children":null,"spread":false},{"title":"dataset","children":[{"title":"normalize_data.py <span style='color:#111;'> 8.58KB </span>","children":null,"spread":false},{"title":"train","children":[{"title":"train_data.npy <span style='color:#111;'> 39.83MB </span>","children":null,"spread":false}],"spread":true},{"title":"test","children":[{"title":"test_data.npy <span style='color:#111;'> 8.83MB </span>","children":null,"spread":false}],"spread":true},{"title":"pandas-describe.py <span style='color:#111;'> 1.57KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"normalize_data.cpython-36.pyc <span style='color:#111;'> 6.54KB </span>","children":null,"spread":false},{"title":"__init__.cpython-36.pyc <span style='color:#111;'> 150B </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"bin_data.py <span style='color:#111;'> 4.54KB </span>","children":null,"spread":false},{"title":"csv_to_npy.py <span style='color:#111;'> 2.39KB </span>","children":null,"spread":false},{"title":"sample-data.csv <span style='color:#111;'> 11.65KB </span>","children":null,"spread":false},{"title":"txt_to_csv.py <span style='color:#111;'> 3.75KB </span>","children":null,"spread":false}],"spread":true},{"title":"results","children":[{"title":"gru_svm_results.txt <span style='color:#111;'> 4.77KB </span>","children":null,"spread":false},{"title":"confusion_matrix_gru+softmax_training.png <span style='color:#111;'> 49.94KB </span>","children":null,"spread":false},{"title":"confusion_matrix_gru+svm_validation.png <span style='color:#111;'> 48.09KB </span>","children":null,"spread":false},{"title":"confusion_matrix_gru+softmax_validation.png <span style='color:#111;'> 51.36KB </span>","children":null,"spread":false},{"title":"initial","children":[{"title":"gru+softmax_hyperparameters <span style='color:#111;'> 262B </span>","children":null,"spread":false},{"title":"gru+svm_hyperparameters <span style='color:#111;'> 270B </span>","children":null,"spread":false},{"title":"svm","children":[{"title":"run_gru+svm_Mon Aug 21 22_50_21 2017-training-tag-accuracy_1.csv <span style='color:#111;'> 34.93KB </span>","children":null,"spread":false},{"title":"results_svm <span style='color:#111;'> 167.60KB </span>","children":null,"spread":false},{"title":"run_gru+svm_Mon Aug 21 22_50_21 2017-validation-tag-accuracy_1.csv <span style='color:#111;'> 34.93KB </span>","children":null,"spread":false},{"title":"results_svm_1 <span style='color:#111;'> 167.62KB </span>","children":null,"spread":false},{"title":"run_gru+svm_Mon Aug 21 15_28_38 2017-validation-tag-accuracy_1.csv <span style='color:#111;'> 34.99KB </span>","children":null,"spread":false},{"title":"run_gru+svm_Mon Aug 21 15_28_38 2017-training-tag-accuracy_1.csv <span style='color:#111;'> 35.05KB </span>","children":null,"spread":false}],"spread":true},{"title":"softmax","children":[{"title":"run_gru+softmax_Tue Aug 22 11_02_23 2017-validation-tag-accuracy_1.csv <span style='color:#111;'> 34.92KB </span>","children":null,"spread":false},{"title":"run_gru+softmax_Tue Aug 22 11_02_23 2017-training-tag-accuracy_1.csv <span style='color:#111;'> 35.06KB </span>","children":null,"spread":false},{"title":"results_softmax <span style='color:#111;'> 170.14KB </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"confusion_matrix_gru+svm_training.png <span style='color:#111;'> 51.09KB </span>","children":null,"spread":false}],"spread":true},{"title":".idea","children":[{"title":"misc.xml <span style='color:#111;'> 188B </span>","children":null,"spread":false},{"title":"gru-svm-master.iml <span style='color:#111;'> 324B </span>","children":null,"spread":false},{"title":"modules.xml <span style='color:#111;'> 287B </span>","children":null,"spread":false},{"title":"workspace.xml <span style='color:#111;'> 4.55KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 50B </span>","children":null,"spread":false},{"title":"inspectionProfiles","children":[{"title":"Project_Default.xml <span style='color:#111;'> 2.39KB </span>","children":null,"spread":false},{"title":"profiles_settings.xml <span style='color:#111;'> 174B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"svm_main.py <span style='color:#111;'> 4.41KB </span>","children":null,"spread":false},{"title":"tes.py <span style='color:#111;'> 5.12KB </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 87B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 1.78KB </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"results_summary.py <span style='color:#111;'> 3.05KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"data.cpython-36.pyc <span style='color:#111;'> 3.38KB </span>","children":null,"spread":false},{"title":"__init__.cpython-36.pyc <span style='color:#111;'> 148B </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"data.py <span style='color:#111;'> 4.72KB </span>","children":null,"spread":false}],"spread":true}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明