基于人脸关键点检测的驾驶员睡意检测系统

上传者: 40651515 | 上传时间: 2022-12-27 14:32:21 | 文件大小: 72.55MB | 文件类型: RAR
  驾驶员注意力不集中或者分心是道路交通事故的主要原因。 为了减少道路交通事故,设计开发驾驶员疲劳检测系统至关重要。本次实现的应用运用开源库Dlib训练好的模型“shape_predictor_68_face_landmarks.dat”进行68点标定,利用OpenCv进行图像化处理,在人脸上画出68个点,并标明序号。当检测到驾驶员的眼睛闭上4-5 秒时候,就会产生警报。 点击驾驶员困倦检测时,系统会自动打开电脑摄像头,你便可以模拟驾驶室的角色进行测试,当驾驶员在驾驶过程中闭眼,且超过5s系统会触 环境配置:python3.7、配置以下包 tensorflow>=1.12* keras==2.2.4 等。 人脸关键点检测是人脸识别任务中重要的基础环节,人脸关键点精确检测对众多科研和应用课题具有关键作用,如:表情识别、疲劳监测等。因此,如何获取高精度人脸关键点,一直以来都是计算机视觉、模式识别、图像处理等领域的热点研究问题。然而人脸关键点检测方法根据是否需要参数化模型可分为以下两类,基于参数化形状模型的方法和基于非参数形状模型的方法。目前,最为常用的是基于非参数形状模型的深度学习方法。

文件下载

资源详情

[{"title":"( 834 个子文件 72.55MB ) 基于人脸关键点检测的驾驶员睡意检测系统","children":[{"title":"cli-32.exe <span style='color:#111;'> 64.00KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 7.11KB </span>","children":null,"spread":false},{"title":"windows_support.py <span style='color:#111;'> 714B </span>","children":null,"spread":false},{"title":"script.tmpl <span style='color:#111;'> 138B </span>","children":null,"spread":false},{"title":"archive_util.py <span style='color:#111;'> 6.44KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明