数值分析颜庆津课件和matlab程序-《数值分析(颜庆津)》课件和matlab程序2.rar

上传者: 39841365 | 上传时间: 2019-12-21 21:40:49 | 文件大小: 3.22MB | 文件类型: rar
数值分析颜庆津课件和matlab程序-《数值分析(颜庆津)》课件和matlab程序2.rar
研究生数值分析课件和matlab程序,颜庆津版本,只能上传小于4M的文件,分两次上传。(这两天在论坛里下了很多matlab有用的资料,谢谢math老师和各位大侠的辛苦分享。) 《数值分析(颜庆津)》课件和matlab程序1.rar 数值分析课件和matlab程序1
《数值分析(颜庆津)》课件和matlab程序2.rar 数值分析课件和matlab程序2


文件下载

资源详情

[{"title":"( 75 个子文件 3.22MB ) 数值分析颜庆津课件和matlab程序-《数值分析(颜庆津)》课件和matlab程序2.rar","children":[{"title":"《数值分析(颜庆津)》课件和matlab程序2","children":[{"title":"研究生数值分析课件2013(2)","children":[{"title":"12_YQJ_Ch5_1_1代数插值.ppt <span style='color:#111;'> 911.00KB </span>","children":null,"spread":false},{"title":"16_YQJ_Ch5_3_1样条插值1111.ppt <span style='color:#111;'> 211.00KB </span>","children":null,"spread":false},{"title":"13_YQJ_Ch5_1_2牛顿插值.ppt <span style='color:#111;'> 995.00KB </span>","children":null,"spread":false},{"title":"20_YQJ_Ch5_6曲线拟合.ppt <span style='color:#111;'> 711.50KB </span>","children":null,"spread":false},{"title":"17_YQJ_Ch5_3_2_4样条插值.ppt <span style='color:#111;'> 481.00KB </span>","children":null,"spread":false},{"title":"19_YQJ_Ch5_6最佳平方逼近.ppt <span style='color:#111;'> 564.00KB </span>","children":null,"spread":false},{"title":"18_YQJ_Ch5_5正交多项式.ppt <span style='color:#111;'> 627.50KB </span>","children":null,"spread":false},{"title":"Ch5_3样条插值10用简介.ppt <span style='color:#111;'> 194.50KB </span>","children":null,"spread":false},{"title":"16_YQJ_Ch5_3_1样条插值.ppt <span style='color:#111;'> 395.00KB </span>","children":null,"spread":false},{"title":"11_YQJ_Ch4非线性方程求根Q.ppt <span style='color:#111;'> 567.50KB </span>","children":null,"spread":false},{"title":"Ch5_5正交多项式09用.ppt <span style='color:#111;'> 637.00KB </span>","children":null,"spread":false},{"title":"15_YQJ_Ch5_2Hrmt插值.ppt <span style='color:#111;'> 265.00KB </span>","children":null,"spread":false},{"title":"21_YQJ_Ch6数值积分.ppt <span style='color:#111;'> 1.53MB </span>","children":null,"spread":false},{"title":"Matlab程序","children":[{"title":"1-解线性代数方程组的Matlab程序","children":[{"title":"ShunXuGauss2.m <span style='color:#111;'> 731B </span>","children":null,"spread":false},{"title":"jacobi.m <span style='color:#111;'> 409B </span>","children":null,"spread":false},{"title":"LieZhuYuan.m <span style='color:#111;'> 1.37KB </span>","children":null,"spread":false},{"title":"BeiJiaMatrix.m <span style='color:#111;'> 604B </span>","children":null,"spread":false},{"title":"SorDieDai.m <span style='color:#111;'> 1.15KB </span>","children":null,"spread":false},{"title":"JiaoHuanMatrix.m <span style='color:#111;'> 684B </span>","children":null,"spread":false},{"title":"gaussseidel.m <span style='color:#111;'> 431B </span>","children":null,"spread":false},{"title":"JacobiF.m <span style='color:#111;'> 886B </span>","children":null,"spread":false},{"title":"ShunXuGauss.m <span style='color:#111;'> 933B </span>","children":null,"spread":false},{"title":"JacobiPuBanjing.m <span style='color:#111;'> 230B </span>","children":null,"spread":false},{"title":"SORPuBanjing.m <span style='color:#111;'> 290B </span>","children":null,"spread":false},{"title":"L_ZuiGanFa.m <span style='color:#111;'> 370B </span>","children":null,"spread":false},{"title":"sor.m <span style='color:#111;'> 451B </span>","children":null,"spread":false},{"title":"ZuiGanFa.m <span style='color:#111;'> 370B </span>","children":null,"spread":false},{"title":"GSPuBanjing.m <span style='color:#111;'> 249B </span>","children":null,"spread":false},{"title":"Gauss_S.m <span style='color:#111;'> 865B </span>","children":null,"spread":false},{"title":"G_SDieDai.m <span style='color:#111;'> 1013B </span>","children":null,"spread":false}],"spread":false},{"title":"2-解非线性代数方程的Matlab程序","children":[{"title":"Lmnewton.m <span style='color:#111;'> 536B </span>","children":null,"spread":false},{"title":"Lmnewton1.m <span style='color:#111;'> 467B </span>","children":null,"spread":false},{"title":"secantline.m <span style='color:#111;'> 659B </span>","children":null,"spread":false},{"title":"secantlineD11.m <span style='color:#111;'> 650B </span>","children":null,"spread":false},{"title":"Untitled.m <span style='color:#111;'> 196B </span>","children":null,"spread":false},{"title":"secantlineD.m <span style='color:#111;'> 652B </span>","children":null,"spread":false},{"title":"NewtonF2.m <span style='color:#111;'> 672B </span>","children":null,"spread":false},{"title":"Lmnewton11.m <span style='color:#111;'> 466B </span>","children":null,"spread":false},{"title":"NewtonF.m <span style='color:#111;'> 588B </span>","children":null,"spread":false},{"title":"JDDDL41.m <span style='color:#111;'> 260B </span>","children":null,"spread":false},{"title":"secantlineD1.m <span style='color:#111;'> 666B </span>","children":null,"spread":false},{"title":"FczNewtonL7.m <span style='color:#111;'> 747B </span>","children":null,"spread":false},{"title":"FCZJDDDxt11.m <span style='color:#111;'> 596B </span>","children":null,"spread":false},{"title":"FCZJDDDL4_6.m <span style='color:#111;'> 657B </span>","children":null,"spread":false},{"title":"FCZJDDDxt10.m <span style='color:#111;'> 596B </span>","children":null,"spread":false},{"title":"Lmnewton22.m <span style='color:#111;'> 383B </span>","children":null,"spread":false},{"title":"Lmnewton2.m <span style='color:#111;'> 385B </span>","children":null,"spread":false}],"spread":false},{"title":"3-求方阵特征值及特征向量的Matlab程序","children":[{"title":"niSSJ.m <span style='color:#111;'> 826B </span>","children":null,"spread":false},{"title":"Jacobi_Dui.m <span style='color:#111;'> 1.31KB </span>","children":null,"spread":false},{"title":"QRself1.m <span style='color:#111;'> 851B </span>","children":null,"spread":false},{"title":"AntiPowerPY.m <span style='color:#111;'> 1.41KB </span>","children":null,"spread":false},{"title":"MatrixMax.m <span style='color:#111;'> 175B </span>","children":null,"spread":false},{"title":"eig_my.m <span style='color:#111;'> 2.13KB </span>","children":null,"spread":false},{"title":"eig_duichen.m <span style='color:#111;'> 1.60KB </span>","children":null,"spread":false},{"title":"AntiPower.m <span style='color:#111;'> 1.24KB </span>","children":null,"spread":false},{"title":"z3xt10.m <span style='color:#111;'> 86B </span>","children":null,"spread":false},{"title":"Power1.m <span style='color:#111;'> 1.37KB </span>","children":null,"spread":false},{"title":"Z3XT.m <span style='color:#111;'> 354B </span>","children":null,"spread":false},{"title":"z3xt12_1.m <span style='color:#111;'> 353B </span>","children":null,"spread":false},{"title":"nssj.m <span style='color:#111;'> 825B </span>","children":null,"spread":false},{"title":"z3xt12.m <span style='color:#111;'> 351B </span>","children":null,"spread":false},{"title":"fmf.m <span style='color:#111;'> 1.22KB </span>","children":null,"spread":false},{"title":"QRself.m <span style='color:#111;'> 847B </span>","children":null,"spread":false},{"title":"cmf.m <span style='color:#111;'> 1.34KB </span>","children":null,"spread":false},{"title":"z3xt11.m <span style='color:#111;'> 248B </span>","children":null,"spread":false},{"title":"z3xt7.m <span style='color:#111;'> 98B </span>","children":null,"spread":false},{"title":"z3li1.m <span style='color:#111;'> 211B </span>","children":null,"spread":false}],"spread":false},{"title":"5-数值求积的Matlab程序","children":[{"title":"SimpInt.m <span style='color:#111;'> 627B </span>","children":null,"spread":false},{"title":"rbg.m <span style='color:#111;'> 1002B </span>","children":null,"spread":false}],"spread":false},{"title":"4-插值与逼近的Matlab程序","children":[{"title":"polyfitk.m <span style='color:#111;'> 1.37KB </span>","children":null,"spread":false},{"title":"lagrange1.m <span style='color:#111;'> 268B </span>","children":null,"spread":false},{"title":"L5_11.m <span style='color:#111;'> 223B </span>","children":null,"spread":false},{"title":"NewtonInter.m <span style='color:#111;'> 1.03KB </span>","children":null,"spread":false},{"title":"yangtiao3.m <span style='color:#111;'> 83B </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"14_YQJ_Ch5_1_2二元函数插值.ppt <span style='color:#111;'> 211.50KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明