Python-DoWhy微软出品的Python因果推断库

上传者: 39840924 | 上传时间: 2021-06-25 21:03:01 | 文件大小: 429KB | 文件类型: ZIP
DoWhy is a Python library that makes it easy to estimate causal effects. DoWhy is based on a unified language for causal inference, combining causal graphical models and potential outcomes frameworks.

文件下载

资源详情

[{"title":"( 88 个子文件 429KB ) Python-DoWhy微软出品的Python因果推断库","children":[{"title":"microsoft-dowhy-28cf381","children":[{"title":"MANIFEST.in <span style='color:#111;'> 66B </span>","children":null,"spread":false},{"title":"README.rst <span style='color:#111;'> 14.59KB </span>","children":null,"spread":false},{"title":"binder","children":[{"title":"environment.yml <span style='color:#111;'> 267B </span>","children":null,"spread":false},{"title":"apt.txt <span style='color:#111;'> 8B </span>","children":null,"spread":false}],"spread":true},{"title":"test mcmc do sampler.ipynb <span style='color:#111;'> 43.22KB </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 90B </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.13KB </span>","children":null,"spread":false},{"title":"setup.cfg <span style='color:#111;'> 42B </span>","children":null,"spread":false},{"title":"setup.py <span style='color:#111;'> 1.52KB </span>","children":null,"spread":false},{"title":"Makefile <span style='color:#111;'> 221B </span>","children":null,"spread":false},{"title":"dowhy","children":[{"title":"causal_identifier.py <span style='color:#111;'> 7.67KB </span>","children":null,"spread":false},{"title":"causal_estimator.py <span style='color:#111;'> 6.13KB </span>","children":null,"spread":false},{"title":"causal_refuter.py <span style='color:#111;'> 821B </span>","children":null,"spread":false},{"title":"do_samplers","children":[{"title":"kernel_density_sampler.py <span style='color:#111;'> 4.68KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 766B </span>","children":null,"spread":false},{"title":"multivariate_weighting_sampler.py <span style='color:#111;'> 1.81KB </span>","children":null,"spread":false},{"title":"weighting_sampler.py <span style='color:#111;'> 1.89KB </span>","children":null,"spread":false},{"title":"mcmc_sampler.py <span style='color:#111;'> 5.74KB </span>","children":null,"spread":false}],"spread":false},{"title":"utils","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"propensity_score.py <span style='color:#111;'> 6.17KB </span>","children":null,"spread":false},{"title":"api.py <span style='color:#111;'> 319B </span>","children":null,"spread":false},{"title":"cli_helpers.py <span style='color:#111;'> 1.29KB </span>","children":null,"spread":false}],"spread":false},{"title":"data_transformers","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"pca_reducer.py <span style='color:#111;'> 650B </span>","children":null,"spread":false},{"title":"dimensionality_reducers","children":[{"title":"dimensionality_reducer.py <span style='color:#111;'> 66B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"datasets.py <span style='color:#111;'> 4.89KB </span>","children":null,"spread":false},{"title":"plotter.py <span style='color:#111;'> 1.88KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"data_transformer.py <span style='color:#111;'> 203B </span>","children":null,"spread":false},{"title":"causal_refuters","children":[{"title":"data_subset_refuter.py <span style='color:#111;'> 917B </span>","children":null,"spread":false},{"title":"placebo_treatment_refuter.py <span style='color:#111;'> 1.29KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 769B </span>","children":null,"spread":false},{"title":"random_common_cause.py <span style='color:#111;'> 1.43KB </span>","children":null,"spread":false}],"spread":false},{"title":"causal_graph.py <span style='color:#111;'> 10.31KB </span>","children":null,"spread":false},{"title":"api","children":[{"title":"__init__.py <span style='color:#111;'> 34B </span>","children":null,"spread":false},{"title":"causal_data_frame.py <span style='color:#111;'> 6.25KB </span>","children":null,"spread":false}],"spread":false},{"title":"do_sampler.py <span style='color:#111;'> 7.17KB </span>","children":null,"spread":false},{"title":"causal_estimators","children":[{"title":"instrumental_variable_estimator.py <span style='color:#111;'> 4.05KB </span>","children":null,"spread":false},{"title":"propensity_score_weighting_estimator.py <span style='color:#111;'> 4.31KB </span>","children":null,"spread":false},{"title":"linear_regression_estimator.py <span style='color:#111;'> 3.28KB </span>","children":null,"spread":false},{"title":"regression_discontinuity_estimator.py <span style='color:#111;'> 1.83KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 791B </span>","children":null,"spread":false},{"title":"propensity_score_matching_estimator.py <span style='color:#111;'> 3.14KB </span>","children":null,"spread":false},{"title":"propensity_score_stratification_estimator.py <span style='color:#111;'> 4.99KB </span>","children":null,"spread":false}],"spread":false},{"title":"do_why.py <span style='color:#111;'> 9.59KB </span>","children":null,"spread":false}],"spread":false},{"title":"docs","children":[{"title":"source","children":[{"title":"dowhy.data_transformers.rst <span style='color:#111;'> 507B </span>","children":null,"spread":false},{"title":"do_sampler_demo.ipynb <span style='color:#111;'> 16.84KB </span>","children":null,"spread":false},{"title":"dowhy_estimation_methods.ipynb <span style='color:#111;'> 86.56KB </span>","children":null,"spread":false},{"title":"lalonde_pandas_api.ipynb <span style='color:#111;'> 12.29KB </span>","children":null,"spread":false},{"title":"dowhy_simple_example.ipynb <span style='color:#111;'> 104.46KB </span>","children":null,"spread":false},{"title":"dowhy_lalonde_example.ipynb <span style='color:#111;'> 4.97KB </span>","children":null,"spread":false},{"title":"readme.rst <span style='color:#111;'> 30B </span>","children":null,"spread":false},{"title":"conf.py <span style='color:#111;'> 5.86KB </span>","children":null,"spread":false},{"title":"dowhy_confounder_example.ipynb <span style='color:#111;'> 121.32KB </span>","children":null,"spread":false},{"title":"code_repo.rst <span style='color:#111;'> 159B </span>","children":null,"spread":false},{"title":"dowhy.api.rst <span style='color:#111;'> 348B </span>","children":null,"spread":false},{"title":"dowhy.causal_estimators.rst <span style='color:#111;'> 1.79KB </span>","children":null,"spread":false},{"title":"dowhy.causal_refuters.rst <span style='color:#111;'> 884B </span>","children":null,"spread":false},{"title":"index.rst <span style='color:#111;'> 668B </span>","children":null,"spread":false},{"title":"Makefile <span style='color:#111;'> 708B </span>","children":null,"spread":false},{"title":"dowhy.rst <span style='color:#111;'> 1.59KB </span>","children":null,"spread":false},{"title":"dowhy_ihdp_data_example.ipynb <span style='color:#111;'> 18.73KB </span>","children":null,"spread":false},{"title":"docs","children":[{"title":"images <span style='color:#111;'> 13B </span>","children":null,"spread":false}],"spread":false},{"title":"dowhy.utils.rst <span style='color:#111;'> 649B </span>","children":null,"spread":false},{"title":"example_graphs","children":[{"title":"simple_graph_example.dot <span style='color:#111;'> 34B </span>","children":null,"spread":false},{"title":"simple_graph_example.gml <span style='color:#111;'> 204B </span>","children":null,"spread":false}],"spread":false},{"title":"dowhy.data_transformers.dimensionality_reducers.rst <span style='color:#111;'> 597B </span>","children":null,"spread":false},{"title":"dowhy.do_samplers.rst <span style='color:#111;'> 1.01KB </span>","children":null,"spread":false},{"title":"load_graph_example.ipynb <span style='color:#111;'> 119.47KB </span>","children":null,"spread":false},{"title":"modules.rst <span style='color:#111;'> 52B </span>","children":null,"spread":false},{"title":"_static","children":[{"title":"regression_output.png <span style='color:#111;'> 61.01KB </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"images","children":[{"title":"do_barplot.png <span style='color:#111;'> 3.15KB </span>","children":null,"spread":false},{"title":"regression_output.png <span style='color:#111;'> 61.01KB </span>","children":null,"spread":false}],"spread":true},{"title":"update_docs.sh <span style='color:#111;'> 36B </span>","children":null,"spread":false},{"title":"Makefile <span style='color:#111;'> 1.13KB </span>","children":null,"spread":false}],"spread":true},{"title":"tests","children":[{"title":"definitions.py <span style='color:#111;'> 123B </span>","children":null,"spread":false},{"title":"data_transformers","children":[{"title":"test_pca_reducer.py <span style='color:#111;'> 1.36KB </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"test_causal_estimator.py <span style='color:#111;'> 813B </span>","children":null,"spread":false},{"title":"causal_estimators","children":[{"title":"test_linear_regression_estimator.py <span style='color:#111;'> 518B </span>","children":null,"spread":false},{"title":"test_propensity_score_matching_estimator.py <span style='color:#111;'> 547B </span>","children":null,"spread":false},{"title":"base.py <span style='color:#111;'> 3.01KB </span>","children":null,"spread":false},{"title":"test_propensity_score_weighting_estimator.py <span style='color:#111;'> 6.95KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"test_instrumental_variable_estimator.py <span style='color:#111;'> 599B </span>","children":null,"spread":false},{"title":"test_propensity_score_stratification_estimator.py <span style='color:#111;'> 637B </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":".gitignore <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明