深度学习大作业-纽约出租车流量预测python源码+数据集.rar

上传者: yuzhangfeng | 上传时间: 2024-06-01 21:17:29 | 文件大小: 1.11MB | 文件类型: RAR
车流量预测任务是一个回归任务,旨在根据区域历史的车流量情况来预测其未来某一段时间的车流量情况。使用的数据为纽约市出租车流量数据。输入为纽约市各区域的历史车流量时间序列,输出为对应各区域的未来车流量的预测值。 纽约出租车流量数据集,时间跨度为从2015年1月1日到2015年3月1日。数据处理成为网格流量数据,时间间隔设定为30分钟。后20天数据被划定为测试集,其余数据为训练集。数据格式:以训练集为例,其shape=(192010202) 代表有1920个时间段,1020个区域,2个特征分别为区域的入流量与出流量

文件下载

资源详情

[{"title":"( 31 个子文件 1.11MB ) 深度学习大作业-纽约出租车流量预测python源码+数据集.rar","children":[{"title":"深度学习大作业-纽约出租车流量预测python源码+数据集","children":[{"title":"func.py <span style='color:#111;'> 1.84KB </span>","children":null,"spread":false},{"title":"draw.py <span style='color:#111;'> 2.01KB </span>","children":null,"spread":false},{"title":"configuration.py <span style='color:#111;'> 557B </span>","children":null,"spread":false},{"title":"main.py <span style='color:#111;'> 5.57KB </span>","children":null,"spread":false},{"title":"NYC-stdn","children":[{"title":"volume_train.npz <span style='color:#111;'> 5.86MB </span>","children":null,"spread":false},{"title":"数据说明.docx <span style='color:#111;'> 30.04KB </span>","children":null,"spread":false},{"title":"volume_test.npz <span style='color:#111;'> 2.93MB </span>","children":null,"spread":false}],"spread":true},{"title":"data_loader.py <span style='color:#111;'> 1.34KB </span>","children":null,"spread":false},{"title":".idea","children":[{"title":"trafficFlowPrediction.iml <span style='color:#111;'> 398B </span>","children":null,"spread":false},{"title":"vcs.xml <span style='color:#111;'> 239B </span>","children":null,"spread":false},{"title":"workspace.xml <span style='color:#111;'> 6.82KB </span>","children":null,"spread":false},{"title":"misc.xml <span style='color:#111;'> 288B </span>","children":null,"spread":false},{"title":"inspectionProfiles","children":[{"title":"profiles_settings.xml <span style='color:#111;'> 174B </span>","children":null,"spread":false}],"spread":true},{"title":"modules.xml <span style='color:#111;'> 294B </span>","children":null,"spread":false},{"title":"deployment.xml <span style='color:#111;'> 764B </span>","children":null,"spread":false}],"spread":true},{"title":"log.txt <span style='color:#111;'> 4.64KB </span>","children":null,"spread":false},{"title":"model","children":[{"title":"gru.py <span style='color:#111;'> 734B </span>","children":null,"spread":false},{"title":"lstm.py <span style='color:#111;'> 739B </span>","children":null,"spread":false},{"title":"cnn_gru.py <span style='color:#111;'> 1.75KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"lstm.cpython-39.pyc <span style='color:#111;'> 1.07KB </span>","children":null,"spread":false},{"title":"cnn_gru.cpython-39.pyc <span style='color:#111;'> 1.66KB </span>","children":null,"spread":false},{"title":"cnn_lstm.cpython-39.pyc <span style='color:#111;'> 1.55KB </span>","children":null,"spread":false},{"title":"gru.cpython-39.pyc <span style='color:#111;'> 1.06KB </span>","children":null,"spread":false}],"spread":true},{"title":"cnn_lstm.py <span style='color:#111;'> 1.41KB </span>","children":null,"spread":false}],"spread":true},{"title":"images","children":[{"title":"cnngru_lr0.001_b64_h64_d0.5_metrics.png <span style='color:#111;'> 47.09KB </span>","children":null,"spread":false},{"title":"lstm_lr0.001_b64_h64_d0.5_metrics.png <span style='color:#111;'> 45.46KB </span>","children":null,"spread":false},{"title":"cnnlstm_lr0.001_b64_h64_d0.5_metrics.png <span style='color:#111;'> 52.67KB </span>","children":null,"spread":false}],"spread":true},{"title":"__pycache__","children":[{"title":"configuration.cpython-39.pyc <span style='color:#111;'> 621B </span>","children":null,"spread":false},{"title":"func.cpython-39.pyc <span style='color:#111;'> 1.99KB </span>","children":null,"spread":false},{"title":"data_loader.cpython-39.pyc <span style='color:#111;'> 1.63KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 76B </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明