MatlabToolboxforDimensionalityReduction-drtoolbox.rar

上传者: 39840914 | 上传时间: 2022-04-14 21:54:38 | 文件大小: 980KB | 文件类型: RAR
MatlabToolboxforDimensionalityReduction-drtoolbox.rar
最近想详细研究下特征提取和降维相关的东西..

在网上搜索了一下.查到了个降维的工具箱.感觉还不错..先分享一下~
这个工具箱里把常见的降维方法几乎都涵盖了..

drtoolbox.rar

=================================
Currently, the Matlab Toolbox for Dimensionality Reduction contains the following techniques:


Principal Component Analysis

Probabilistic PCA


Factor Analysis


Sammon mapping


Linear Discriminant Analysis


Multidimensional scaling


Isomap


Landmark Isomap


Local Linear Embedding


Laplacian Eigenmaps


Hessian LLE


Local Tangent Space Alignment


Conformal Eigenmaps


Maximum Variance Unfolding


Landmark MVU


Fast Maximum Variance Unfolding


Kernel PCA


Generalized Discriminant Analysis


Diffusion maps


Stochastic Neighbor Embedding


Symmetric SNE


new: t-Distributed Stochastic Neighbor Embedding


Neighborhood Preserving Embedding


Locality Preserving Projection


Linear Local Tangent Space Alignment


Stochastic Proximity Embedding


Multilayer autoencoders

Local Linear Coordination


Manifold charting


Coordinated Factor Analysis


new: Gaussian Process Latent Variable Model

文件下载

资源详情

[{"title":"( 251 个子文件 980KB ) MatlabToolboxforDimensionalityReduction-drtoolbox.rar","children":[{"title":"._reconstruction_error.m <span style='color:#111;'> 82B </span>","children":null,"spread":false},{"title":"._prewhiten.m <span style='color:#111;'> 82B </span>","children":null,"spread":false},{"title":"降维方法目录.txt <span style='color:#111;'> 1.22KB </span>","children":null,"spread":false},{"title":"drgui.m <span style='color:#111;'> 570B </span>","children":null,"spread":false},{"title":"Readme.txt <span style='color:#111;'> 12.17KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明