无标签分类:从高能物理中的混合样品中学习

上传者: 38735119 | 上传时间: 2022-07-03 10:15:03 | 文件大小: 523KB | 文件类型: PDF
现代机器学习技术可用于构建强大的对撞机物理问题的模型。 但是,在许多应用中,由于数据中缺少真实级别的信息,因此在不完善的仿真上对这些模型进行了训练,这冒着仿真学习模型风险的风险。 在本文中,我们介绍了无标签分类的范式(CWoLa),其中训练了分类器以区分类的统计混合,这在对撞机物理学中很常见。 至关重要的是,既不需要单个标签也不需要类别比例,但是我们证明了CWoLa范例中的最佳分类器也是在传统的完全监督情况下所有标签信息均可用的最佳分类器。 在一个分析性玩具示例中证明了这种方法的强大功能之后,我们考虑了对撞机物理的现实基准:使用夸克/胶子混合训练样本区分夸克和胶子引发的射流。 更一般而言,CWoLa可以应用于标签或类别比例未知或模拟不可靠但类别的统计混合可用的任何分类问题。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明