psf的matlab代码-Localization:本土化

上传者: 38732343 | 上传时间: 2023-03-06 10:36:54 | 文件大小: 100KB | 文件类型: ZIP
psf的matlab代码本土化 这是通过在Matlab(Matconvnet)和Python(Keras和TensorFlow)上进行深度学习而实现的三维本地化显微镜的实现。 该模型基于深度卷积神经网络(CNN),可从常规宽视野荧光显微镜捕获的单个2D图像中检索荧光团的3D位置。 具有挑战性的3D定位通过两个级联的CNN转换为多标签分类问题。 该存储库包括: 珠子/细胞/颗粒定位培训和测试的源代码。 模拟训练数据集的源代码。 斑马鱼血液移动的数据集通过宽视野荧光显微镜收集,用于细胞定位/跟踪。 在模拟/收集的数据集上进行训练和测试的示例。 该代码已记录并设计为易于扩展。 如果您在研究中使用它,请考虑引用该存储库(下面的bibtex)。 入门 斑马鱼或系统PSF的数据集可从Google云端硬盘获取。 对于Python 3.5.5用户,请同时安装和。 对于Matlab用户,请安装。 训练级联的CNN train_network_A.py(.m)提供了一个训练第一个CNN(横向检测CNN)以确定每个贴片的中心横向位置是否存在衍射图样的示例。 train_network_B.py(.m)提供了

文件下载

资源详情

[{"title":"( 66 个子文件 100KB ) psf的matlab代码-Localization:本土化","children":[{"title":"Localization-master","children":[{"title":"matlab","children":[{"title":"Cell_Localization","children":[{"title":"train_network_A.m <span style='color:#111;'> 4.39KB </span>","children":null,"spread":false},{"title":"train_network_B","children":[{"title":"my_getBatchWrapper_xyz.m <span style='color:#111;'> 3.96KB </span>","children":null,"spread":false},{"title":"my_sampleGen.m <span style='color:#111;'> 2.93KB </span>","children":null,"spread":false},{"title":"my_cnnInitializeModel_xyz.m <span style='color:#111;'> 9.01KB </span>","children":null,"spread":false},{"title":"my_setup_na.m <span style='color:#111;'> 1.69KB </span>","children":null,"spread":false},{"title":"my_depthPrediction_xyz.m <span style='color:#111;'> 2.58KB </span>","children":null,"spread":false}],"spread":true},{"title":"test_network.m <span style='color:#111;'> 7.41KB </span>","children":null,"spread":false},{"title":"train_network_B.m <span style='color:#111;'> 4.78KB </span>","children":null,"spread":false},{"title":"train_network_A","children":[{"title":"my_getBatchWrapper_xyz.m <span style='color:#111;'> 4.36KB </span>","children":null,"spread":false},{"title":"my_sampleGen.m <span style='color:#111;'> 2.53KB </span>","children":null,"spread":false},{"title":"my_cnnInitializeModel_xyz.m <span style='color:#111;'> 9.19KB </span>","children":null,"spread":false},{"title":"my_setup_na.m <span style='color:#111;'> 1.91KB </span>","children":null,"spread":false},{"title":"my_depthPrediction_xyz.m <span style='color:#111;'> 2.58KB </span>","children":null,"spread":false}],"spread":true},{"title":"test_network","children":[{"title":"my_fun_2_locationFit.m <span style='color:#111;'> 1.38KB </span>","children":null,"spread":false},{"title":"my_fun_1_evaluateSingle.m <span style='color:#111;'> 1.36KB </span>","children":null,"spread":false},{"title":"my_kalmanTracking.m <span style='color:#111;'> 6.24KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"SR_Localization","children":[{"title":"train_network_A.m <span style='color:#111;'> 3.09KB </span>","children":null,"spread":false},{"title":"train_network_B","children":[{"title":"my_getBatchWrapper_xyz.m <span style='color:#111;'> 1.63KB </span>","children":null,"spread":false},{"title":"my_cnnInitializeModel_xyz.m <span style='color:#111;'> 6.17KB </span>","children":null,"spread":false},{"title":"my_setup_sm.m <span style='color:#111;'> 2.10KB </span>","children":null,"spread":false},{"title":"my_prediction_xyz.m <span style='color:#111;'> 1.40KB </span>","children":null,"spread":false}],"spread":true},{"title":"test_network.m <span style='color:#111;'> 7.17KB </span>","children":null,"spread":false},{"title":"train_network_B.m <span style='color:#111;'> 4.33KB </span>","children":null,"spread":false},{"title":"train_network_A","children":[{"title":"my_getBatchWrapper_xyz.m <span style='color:#111;'> 1.25KB </span>","children":null,"spread":false},{"title":"my_cnnInitializeModel_xyz.m <span style='color:#111;'> 5.09KB </span>","children":null,"spread":false},{"title":"my_setup_sm.m <span style='color:#111;'> 2.18KB </span>","children":null,"spread":false},{"title":"my_prediction_xyz.m <span style='color:#111;'> 1.21KB </span>","children":null,"spread":false}],"spread":true},{"title":"test_network","children":[{"title":"my_evalRes.m <span style='color:#111;'> 2.14KB </span>","children":null,"spread":false},{"title":"my_fun_1_evaluateSingle.m <span style='color:#111;'> 1.21KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"my_util","children":[{"title":"convnfft.m <span style='color:#111;'> 6.46KB </span>","children":null,"spread":false},{"title":"my_simSplinePSF.m <span style='color:#111;'> 2.73KB </span>","children":null,"spread":false},{"title":"my_readKernel.m <span style='color:#111;'> 896B </span>","children":null,"spread":false},{"title":"my_mkdir.m <span style='color:#111;'> 190B </span>","children":null,"spread":false},{"title":"computeDelta3Dj_v2.m <span style='color:#111;'> 1.14KB </span>","children":null,"spread":false},{"title":"progress.m <span style='color:#111;'> 220B </span>","children":null,"spread":false},{"title":"fAt3Dj_v2.m <span style='color:#111;'> 251B </span>","children":null,"spread":false},{"title":"my_cut.m <span style='color:#111;'> 159B </span>","children":null,"spread":false},{"title":"my_dir.m <span style='color:#111;'> 1.12KB </span>","children":null,"spread":false},{"title":"conv2fft.m <span style='color:#111;'> 1.51KB </span>","children":null,"spread":false}],"spread":true},{"title":"Bead_Localization","children":[{"title":"train_network_A.m <span style='color:#111;'> 3.91KB </span>","children":null,"spread":false},{"title":"train_network_B","children":[{"title":"my_getBatchWrapper_xyz.m <span style='color:#111;'> 3.96KB </span>","children":null,"spread":false},{"title":"my_sampleGen.m <span style='color:#111;'> 2.93KB </span>","children":null,"spread":false},{"title":"my_cnnInitializeModel_xyz.m <span style='color:#111;'> 9.01KB </span>","children":null,"spread":false},{"title":"my_setup_na.m <span style='color:#111;'> 1.69KB </span>","children":null,"spread":false},{"title":"my_depthPrediction_xyz.m <span style='color:#111;'> 2.58KB </span>","children":null,"spread":false}],"spread":true},{"title":"test_network.m <span style='color:#111;'> 4.98KB </span>","children":null,"spread":false},{"title":"train_network_B.m <span style='color:#111;'> 4.03KB </span>","children":null,"spread":false},{"title":"train_network_A","children":[{"title":"my_getBatchWrapper_xyz.m <span style='color:#111;'> 4.36KB </span>","children":null,"spread":false},{"title":"my_sampleGen.m <span style='color:#111;'> 2.53KB </span>","children":null,"spread":false},{"title":"my_cnnInitializeModel_xyz.m <span style='color:#111;'> 9.19KB </span>","children":null,"spread":false},{"title":"my_setup_na.m <span style='color:#111;'> 1.91KB </span>","children":null,"spread":false},{"title":"my_depthPrediction_xyz.m <span style='color:#111;'> 2.58KB </span>","children":null,"spread":false}],"spread":true},{"title":"test_network","children":[{"title":"my_fun_2_locationFit.m <span style='color:#111;'> 1.38KB </span>","children":null,"spread":false},{"title":"my_evalRes.m <span style='color:#111;'> 2.16KB </span>","children":null,"spread":false},{"title":"my_fun_1_evaluateSingle.m <span style='color:#111;'> 1.36KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true},{"title":"README.md <span style='color:#111;'> 2.62KB </span>","children":null,"spread":false},{"title":"python","children":[{"title":"SR_Localization","children":[{"title":"train_network_B.py <span style='color:#111;'> 7.51KB </span>","children":null,"spread":false},{"title":"test_network.py <span style='color:#111;'> 9.69KB </span>","children":null,"spread":false},{"title":"parameters.py <span style='color:#111;'> 3.07KB </span>","children":null,"spread":false},{"title":"DataGeneration.py <span style='color:#111;'> 8.77KB </span>","children":null,"spread":false},{"title":"train_network_A.py <span style='color:#111;'> 6.47KB </span>","children":null,"spread":false}],"spread":true},{"title":"Bead_Localization","children":[{"title":"train_network_B.py <span style='color:#111;'> 5.48KB </span>","children":null,"spread":false},{"title":"test_network.py <span style='color:#111;'> 7.79KB </span>","children":null,"spread":false},{"title":"parameters.py <span style='color:#111;'> 1.76KB </span>","children":null,"spread":false},{"title":"DataGeneration.py <span style='color:#111;'> 12.03KB </span>","children":null,"spread":false},{"title":"train_network_A.py <span style='color:#111;'> 5.46KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明