上传者: 38722184
|
上传时间: 2021-12-26 16:42:00
|
文件大小: 637KB
|
文件类型: -
本文研究了离散非线性系统的混沌同步问题,即驱动系统为x(k+1)=f(x(k)),响应系统为x^(k+1)=f(x^(k))+u(k)构成的混沌系统的同步问题。基于Lyapunov稳定性理论给出了控制律的设计,选取控制律u(k)=-e(k+1)下,得到系统的Lyapunov函数一阶差分ΔV<0,从而离散非线性系统及其时滞系统是混沌同步的,数值算例结果表明系统的误差曲线趋于同步,从而说明了该方法的有效性。