基于多尺度残差网络的小样本高光谱图像分类

上传者: 38717031 | 上传时间: 2022-03-28 16:27:30 | 文件大小: 9.05MB | 文件类型: -
为了解决基于深度学习的高光谱图像分类方法对于小样本数据分类精度低的问题,提出了一种基于多尺度残差网络的分类模型。该模型通过在残差模块中加入分支结构,分别构造了基于光谱特征和空间特征的提取模块,实现了空间特征和光谱特征的多尺度提取融合,充分利用了高光谱图像中丰富的空谱信息。此外,所提模型使用了动态学习率、批归一化以及Dropout等来提高计算效率和防止过拟合。实验结果表明,该模型在Indian Pines和Pavia University数据集上分别取得了99.07%和99.96%的总体分类精度,与支持向量机和现有的深度学习方法相比,所提模型有效地提高了针对小样本高光谱图像的分类性能。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明