l-曲线matlab代码-DiabeticsReadmissionPrediction:2014NITKCMU冬季学校的研究项目:糖尿病再入院

上传者: 38708461 | 上传时间: 2023-02-28 16:10:27 | 文件大小: 1.67MB | 文件类型: ZIP
l-曲线矩阵代码糖尿病再入院预测 2014年NITK CMU冬季学校的研究项目:糖尿病再入院率分析,用于有效的医院资源管理和提高初诊效率。 医院再入院率分析 A.引言 1.重要性和问题! 在印度和许多其他国家/地区,我们可以观察到排队等候医生的病人以及在急诊病房死亡的许多病人,而在适当的时间没有医生在场。 此外,由于缺乏医疗设备,护士,化验室和救护车,许多患者失去了生命。 这要求有效的医院资源管理。 如果在初期就诊断出许多疾病,例如癌症,心脏病等,就可以治愈。 在大多数情况下,患者会因某些疾病而入院,医生可能会在初次诊断时错过实际的并发症,由于此原因患者后来会出现严重的并发症,并可能导致其死亡。 因此,需要提高初始诊断的效率。 另一方面,处理同一患者的再入院将在一定时间内消耗给定人群的资源,从而增加了整体医疗费用。 因此,降低与重新录取相关的成本对任何国家来说都是非常重要的。 2.我们在做什么? 问题! 敏锐地观察上述问题,我们可以确定它们与医院的再住院密切相关。 因此,通过预测患者是否会在一个月内再次入院,我们可以估算出再入院率,这有助于根据特定时间和地点所需的医生,医疗设备等的类型

文件下载

资源详情

[{"title":"( 78 个子文件 1.67MB ) l-曲线matlab代码-DiabeticsReadmissionPrediction:2014NITKCMU冬季学校的研究项目:糖尿病再入院","children":[{"title":"DiabeticsReadmissionPrediction-master","children":[{"title":".gitignore <span style='color:#111;'> 574B </span>","children":null,"spread":false},{"title":"results","children":[{"title":"All_plot30_final.pdf <span style='color:#111;'> 250.84KB </span>","children":null,"spread":false},{"title":"consolidated","children":[{"title":"Paper-results","children":[{"title":"res_C_G30.xlsx <span style='color:#111;'> 14.31KB </span>","children":null,"spread":false},{"title":"All_res_NC.csv <span style='color:#111;'> 1.99KB </span>","children":null,"spread":false},{"title":"res_C_NO.csv <span style='color:#111;'> 575B </span>","children":null,"spread":false},{"title":"All_res_NC.xlsx <span style='color:#111;'> 12.84KB </span>","children":null,"spread":false},{"title":"All_res_C_final.xlsx <span style='color:#111;'> 11.95KB </span>","children":null,"spread":false},{"title":"res_C_L30.csv <span style='color:#111;'> 583B </span>","children":null,"spread":false},{"title":"All_res_C_final.csv <span style='color:#111;'> 1.99KB </span>","children":null,"spread":false},{"title":"res_C_G30.csv <span style='color:#111;'> 583B </span>","children":null,"spread":false},{"title":"res_C_L30.xlsx <span style='color:#111;'> 13.42KB </span>","children":null,"spread":false},{"title":"All_res_C_final - Copy.xlsx <span style='color:#111;'> 12.48KB </span>","children":null,"spread":false},{"title":"MLPC-H1.xlsx <span style='color:#111;'> 27.00KB </span>","children":null,"spread":false},{"title":"res_C_NO.xlsx <span style='color:#111;'> 13.41KB </span>","children":null,"spread":false},{"title":"MLPC-H0.xlsx <span style='color:#111;'> 26.90KB </span>","children":null,"spread":false},{"title":"res_C_WA.csv <span style='color:#111;'> 679B </span>","children":null,"spread":false},{"title":"MLPC-H0.csv <span style='color:#111;'> 4.88KB </span>","children":null,"spread":false},{"title":"res_C_WA.xlsx <span style='color:#111;'> 9.97KB </span>","children":null,"spread":false},{"title":"MLPC-H1.csv <span style='color:#111;'> 4.85KB </span>","children":null,"spread":false},{"title":"All_res_NC - Copy.xlsx <span style='color:#111;'> 13.40KB </span>","children":null,"spread":false}],"spread":false},{"title":"Paper_figs","children":[{"title":"full_NN_weights_H0.PNG <span style='color:#111;'> 87.56KB </span>","children":null,"spread":false},{"title":"NC_scikit_PR.PNG <span style='color:#111;'> 48.58KB </span>","children":null,"spread":false},{"title":"NC_scikit_ROC.PNG <span style='color:#111;'> 62.02KB </span>","children":null,"spread":false},{"title":"FeatureImp_H1.PNG <span style='color:#111;'> 16.83KB </span>","children":null,"spread":false},{"title":"MLPC2_ROC.PNG <span style='color:#111;'> 6.90KB </span>","children":null,"spread":false},{"title":"MLPC2_confusion_matrix.PNG <span style='color:#111;'> 7.97KB </span>","children":null,"spread":false},{"title":"intro_graph1.PNG <span style='color:#111;'> 18.41KB </span>","children":null,"spread":false},{"title":"intro_graph2.PNG <span style='color:#111;'> 72.06KB </span>","children":null,"spread":false},{"title":"full_MLPC_weights_H1.PNG <span style='color:#111;'> 80.33KB </span>","children":null,"spread":false},{"title":"NO.PNG <span style='color:#111;'> 35.48KB </span>","children":null,"spread":false},{"title":"idmappings_2.PNG <span style='color:#111;'> 25.39KB </span>","children":null,"spread":false},{"title":"L30.PNG <span style='color:#111;'> 35.29KB </span>","children":null,"spread":false},{"title":"feature_table.PNG <span style='color:#111;'> 13.46KB </span>","children":null,"spread":false},{"title":"output_weights_unit1.PNG <span style='color:#111;'> 3.66KB </span>","children":null,"spread":false},{"title":"res_C_final.PNG <span style='color:#111;'> 36.94KB </span>","children":null,"spread":false},{"title":"res_C.PNG <span style='color:#111;'> 50.12KB </span>","children":null,"spread":false},{"title":"res_NC_final.PNG <span style='color:#111;'> 35.99KB </span>","children":null,"spread":false},{"title":"FeatureImp_H0.PNG <span style='color:#111;'> 16.09KB </span>","children":null,"spread":false},{"title":"full_NN_weights_H1.PNG <span style='color:#111;'> 86.92KB </span>","children":null,"spread":false},{"title":"idmappings_1.PNG <span style='color:#111;'> 22.86KB </span>","children":null,"spread":false},{"title":"MLPC2_PR.PNG <span style='color:#111;'> 6.53KB </span>","children":null,"spread":false},{"title":"full_MLPC_weights_H0.PNG <span style='color:#111;'> 79.64KB </span>","children":null,"spread":false},{"title":"res_NC.PNG <span style='color:#111;'> 48.76KB </span>","children":null,"spread":false},{"title":"Feature_imp_treebagger.png <span style='color:#111;'> 382.04KB </span>","children":null,"spread":false},{"title":"AR_poster.PNG <span style='color:#111;'> 25.34KB </span>","children":null,"spread":false},{"title":"L30 - Copy.PNG <span style='color:#111;'> 35.29KB </span>","children":null,"spread":false},{"title":"output_weights_unit0.PNG <span style='color:#111;'> 3.59KB </span>","children":null,"spread":false},{"title":"G30.PNG <span style='color:#111;'> 33.80KB </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"All_plot30_final.txt <span style='color:#111;'> 650B </span>","children":null,"spread":false}],"spread":true},{"title":"code","children":[{"title":"rf_combi_yes.pyc <span style='color:#111;'> 2.59KB </span>","children":null,"spread":false},{"title":"pandas_sample.py <span style='color:#111;'> 2.82KB </span>","children":null,"spread":false},{"title":"rf_combi_yes.py <span style='color:#111;'> 3.57KB </span>","children":null,"spread":false},{"title":"adaboost.py <span style='color:#111;'> 7.26KB </span>","children":null,"spread":false},{"title":"diag_compress.py <span style='color:#111;'> 2.83KB </span>","children":null,"spread":false},{"title":"rf_all.py <span style='color:#111;'> 3.49KB </span>","children":null,"spread":false},{"title":"MR_1.py <span style='color:#111;'> 12.71KB </span>","children":null,"spread":false},{"title":"Experiment_one.py <span style='color:#111;'> 7.45KB </span>","children":null,"spread":false},{"title":"Experiment_ALL_plotG3.py <span style='color:#111;'> 12.84KB </span>","children":null,"spread":false},{"title":"Experiment_ALL_plot30_COPIED.py <span style='color:#111;'> 13.82KB </span>","children":null,"spread":false},{"title":"Experiment_Framework.py <span style='color:#111;'> 5.94KB </span>","children":null,"spread":false},{"title":"rf_combi_another.py <span style='color:#111;'> 3.54KB </span>","children":null,"spread":false},{"title":"pandas_trial.pyc <span style='color:#111;'> 2.53KB </span>","children":null,"spread":false},{"title":"complete.py <span style='color:#111;'> 428B </span>","children":null,"spread":false},{"title":"nn_test.py <span style='color:#111;'> 15.38KB </span>","children":null,"spread":false},{"title":"Cross-validating-testing.py <span style='color:#111;'> 2.55KB </span>","children":null,"spread":false},{"title":"diag_mappings_1.py <span style='color:#111;'> 1.05KB </span>","children":null,"spread":false},{"title":"Experiment_ALL_plot30_More_ADA.py <span style='color:#111;'> 13.59KB </span>","children":null,"spread":false},{"title":"try_svm_rpb.py <span style='color:#111;'> 7.48KB </span>","children":null,"spread":false},{"title":"Experiment_ALL_plotNO.py <span style='color:#111;'> 12.83KB </span>","children":null,"spread":false},{"title":"Experiment_ALL_plot30_NN_out.py <span style='color:#111;'> 14.82KB </span>","children":null,"spread":false},{"title":"shuffler.py <span style='color:#111;'> 375B </span>","children":null,"spread":false},{"title":"Experiment_ALL_plot30.py <span style='color:#111;'> 13.65KB </span>","children":null,"spread":false},{"title":"data_mapping_pm.py <span style='color:#111;'> 598B </span>","children":null,"spread":false},{"title":"Experiment_ALL.py <span style='color:#111;'> 8.08KB </span>","children":null,"spread":false},{"title":"diag_mappings.py <span style='color:#111;'> 265B </span>","children":null,"spread":false}],"spread":false},{"title":"README.md <span style='color:#111;'> 11.82KB </span>","children":null,"spread":false},{"title":".gitattributes <span style='color:#111;'> 378B </span>","children":null,"spread":false},{"title":"data info link.txt <span style='color:#111;'> 791B </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明