利用AdaBoost学习算法进行多尺度行人检测

上传者: 38707240 | 上传时间: 2021-03-12 09:08:05 | 文件大小: 449KB | 文件类型: PDF
行人检测在视觉监控,驾驶员辅助系统中具有广泛的应用。 它在计算机视觉和模式识别中也非常重要。 在我们的研究中,我们提出了行人检测的多尺度方案。 行人检测方案包括构建强分类器和多尺度检测的两个步骤。 强分类器是弱分类器的集合,是通过使用基于类似Harr特征的AdaBoost学习算法构建的。 然后,采用强分类器对多尺度图像中的行人进行检测,并对检测结果进行合并。 在我们的实验中,提出的多尺度检测方案在灵敏度达到89.3%的情况下每张图像报告了0.35个假阳性。 这表明行人检测的多尺度方案实现了高性能。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明