上传者: 38706531
|
上传时间: 2021-07-18 18:10:46
|
文件大小: 916KB
|
文件类型: PDF
文章目录1 摘要2 亮点2.1 解码器结构2.1.1 反池化层2.1.2 反卷积层2.1.3 反池化和反卷积结合2.2 网络整体结构3 部分效果3.1 FCN和DeconvNet的对比3.2 各个网络效果对比4 结论5 参考文献
1 摘要
针对单纯的FCN网络存在忽略小物体、分解大物体的问题,当时通常地做法是使用CRF做后处理进行对分割结果进行调整。而本文提出了DeconvNet,该网络可以拆解成反卷积层和反池化层,可以很好地解决上面FCN出现的问题并完成语义分割任务。作者最后发现DeconvNet和FCN能够非常兼容地进行合并,因此作者最后将FCN和DeconvNet结合能产生更好地效果。