上传者: 38698943
|
上传时间: 2022-04-27 19:18:10
|
文件大小: 341KB
|
文件类型: PDF
在这篇文章中,我们将讨论mask R-CNN背后的一些理论,以及如何在PyTorch中使用预训练的mask R-CNN模型。
1.语义分割、目标检测和实例分割
之前已经介绍过:
1、语义分割:在语义分割中,我们分配一个类标签(例如。狗、猫、人、背景等)对图像中的每个像素。
2、目标检测:在目标检测中,我们将类标签分配给包含对象的包围框。
一个非常自然的想法是把两者结合起来。我们只想在一个对象周围识别一个包围框,并且找到包围框中的哪些像素属于对象。 换句话说,我们想要一个掩码,它指示(使用颜色或灰度值)哪些像素属于同一对象。 产生上述掩码的一类算法称为实例分割算法。mask R-CNN就是这样一