案例分享|使用数字孪生体进行预测性维护

上传者: 38692202 | 上传时间: 2021-11-29 16:40:31 | 文件大小: 638KB | 文件类型: -
当工业设备发生故障时,导致的问题往往不是更换设备的费用,而是被迫停机。一条生产线静止不动可能意味着每分钟损失数千美元。定期维护可以帮助避免计划外停机,但不能保证设备不会发生故障。如果机器能显示出某个部件何时会发生故障呢?甚至如果机器能告诉您哪个部件需要更换呢?这样一来,计划外停机时间将大大减少。计划的维护只在必要时进行,而不是以固定的时间间隔进行。这便是预测性维护的目标:通过使用传感器数据预测何时需要维护,以此来避免停机。在任何预测性维护算法的开发过程中,核心都是传感器数据,传感器数据可以用来训练故障检测的分类算法。在预处理步骤中,将从这些数据中提取出有意义的特征,并使用这些特征训练用于预测

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明