PCA 和 ICA 包:实现主成分分析 (PCA) 和独立成分分析 (ICA)-matlab开发

上传者: 38635975 | 上传时间: 2022-05-02 10:08:17 | 文件大小: 388KB | 文件类型: ZIP
该包包含实现主成分分析 (PCA) 和独立成分分析 (ICA) 的函数。 PCA 和 ICA 在此包中作为函数实现,并包含多个示例来演示它们的使用。 在 PCA 中,多维数据被投影到对应于其几个最大奇异值的奇异向量上。 这种操作有效地将输入单个分解为数据中最大方差方向上的正交分量。 因此,PCA 经常用于降维应用,其中执行 PCA 会产生数据的低维表示,可以将其反转以紧密地重建原始数据。 在 ICA 中,多维数据被分解为在适当意义上最大程度独立的组件(峰态和负熵,在这个包中)。 ICA 与 PCA 的不同之处在于,低维信号不一定对应最大方差的方向; 相反,ICA 组件具有最大的统计独立性。 在实践中,ICA 通常可以揭示多维数据中不相交的潜在趋势。

文件下载

资源详情

[{"title":"( 1 个子文件 388KB ) PCA 和 ICA 包:实现主成分分析 (PCA) 和独立成分分析 (ICA)-matlab开发","children":[{"title":"pca_ica.zip <span style='color:#111;'> 389.95KB </span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明