欧拉公式求圆周率的matlab代码-hydro_examples:各种流体力学技术的简单一维示例

上传者: 38607479 | 上传时间: 2023-02-13 20:45:06 | 文件大小: 346KB | 文件类型: ZIP
欧拉公式求长期率的matlab代码hydro_examples 各种流体力学技术的简单一维示例 这是一些简单的python代码(加上一些Fortran代码)的集合,这些代码演示了流体力学代码中使用的一些基本技术。 所有代码都是独立的-没有相互依赖关系。 这些代码与讲义一起位于: 并使用pyro2代码: advection/ advection.py :具有多种限制器的一维二阶线性对流求解器。 fdadvect_implicit.py :使用周期边界条件的一维一阶一阶隐式有限差分线性对流求解器。 fdadvect.py :使用迎风微分的一维一阶显式有限差分线性对流求解器。 fv_mol.py :一维线法二阶精确对流求解器。 Fortran/ : advect.f90 :二阶线性对流的Fortran实现。 此版本执行分段常数,分段线性和分段抛物线(PPM)重建。 basic-numerics orbit-converge.py (和orbit.py ):演示了各种ODE积分方法对太阳绕地球旋转问题的收敛性。 burgers/ burgers.py :不粘的Burgers方程的一维二阶求解器

文件下载

资源详情

[{"title":"( 76 个子文件 346KB ) 欧拉公式求圆周率的matlab代码-hydro_examples:各种流体力学技术的简单一维示例","children":[{"title":"hydro_examples-master","children":[{"title":"basic_numerics","children":[{"title":"ODEs","children":[{"title":"orbit-converge.py <span style='color:#111;'> 1.90KB </span>","children":null,"spread":false},{"title":"orbit.py <span style='color:#111;'> 9.32KB </span>","children":null,"spread":false}],"spread":true},{"title":"roots","children":[{"title":"roots.py <span style='color:#111;'> 2.83KB </span>","children":null,"spread":false},{"title":"roots_plot.py <span style='color:#111;'> 3.50KB </span>","children":null,"spread":false}],"spread":true},{"title":"derivatives","children":[{"title":"deriv_error.py <span style='color:#111;'> 528B </span>","children":null,"spread":false},{"title":"derivatives.py <span style='color:#111;'> 2.04KB </span>","children":null,"spread":false}],"spread":true},{"title":"FFT","children":[{"title":"fft_simple_examples.py <span style='color:#111;'> 4.15KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"finite-volume","children":[{"title":"conservative-interpolation.ipynb <span style='color:#111;'> 94.08KB </span>","children":null,"spread":false},{"title":"conservative-interpolation-cyl.ipynb <span style='color:#111;'> 30.51KB </span>","children":null,"spread":false}],"spread":true},{"title":"LICENSE <span style='color:#111;'> 1.46KB </span>","children":null,"spread":false},{"title":"elliptic","children":[{"title":"poisson_fft.png <span style='color:#111;'> 25.94KB </span>","children":null,"spread":false},{"title":"poisson_fft.py <span style='color:#111;'> 3.60KB </span>","children":null,"spread":false}],"spread":true},{"title":"incompressible","children":[{"title":"project.py <span style='color:#111;'> 8.69KB </span>","children":null,"spread":false}],"spread":true},{"title":"parallel","children":[{"title":"relax-mpi.f90 <span style='color:#111;'> 10.39KB </span>","children":null,"spread":false},{"title":"relax-omp.f90 <span style='color:#111;'> 6.90KB </span>","children":null,"spread":false}],"spread":true},{"title":".gitignore <span style='color:#111;'> 135B </span>","children":null,"spread":false},{"title":"diffusion","children":[{"title":"diffusion_implicit.py <span style='color:#111;'> 6.60KB </span>","children":null,"spread":false},{"title":"diffusion_fo_implicit.py <span style='color:#111;'> 3.86KB </span>","children":null,"spread":false},{"title":"diffusion_explicit.py <span style='color:#111;'> 6.61KB </span>","children":null,"spread":false},{"title":"diff_converge.py <span style='color:#111;'> 2.20KB </span>","children":null,"spread":false}],"spread":true},{"title":"multigrid","children":[{"title":"smooth-modes.py <span style='color:#111;'> 1.83KB </span>","children":null,"spread":false},{"title":"smooth.py <span style='color:#111;'> 2.87KB </span>","children":null,"spread":false},{"title":"smooth-badbcs.py <span style='color:#111;'> 3.15KB </span>","children":null,"spread":false},{"title":"mg_converge.py <span style='color:#111;'> 1.64KB </span>","children":null,"spread":false},{"title":"mg_test.py <span style='color:#111;'> 1.98KB </span>","children":null,"spread":false},{"title":"smooth-norms.py <span style='color:#111;'> 2.74KB </span>","children":null,"spread":false},{"title":"patch1d.py <span style='color:#111;'> 12.10KB </span>","children":null,"spread":false},{"title":"multigrid.py <span style='color:#111;'> 12.22KB </span>","children":null,"spread":false}],"spread":true},{"title":"compressible","children":[{"title":"cfl.py <span style='color:#111;'> 942B </span>","children":null,"spread":false},{"title":"euler.ipynb <span style='color:#111;'> 58.51KB </span>","children":null,"spread":false},{"title":"riemann.py <span style='color:#111;'> 10.07KB </span>","children":null,"spread":false},{"title":"MOL","children":[{"title":"python","children":[{"title":"riemann.py <span style='color:#111;'> 6.99KB </span>","children":null,"spread":false},{"title":"euler_mol.py <span style='color:#111;'> 8.46KB </span>","children":null,"spread":false},{"title":"convergence.py <span style='color:#111;'> 975B </span>","children":null,"spread":false}],"spread":false},{"title":"Fortran","children":[{"title":"GNUmakefile <span style='color:#111;'> 870B </span>","children":null,"spread":false},{"title":"timestep.f90 <span style='color:#111;'> 632B </span>","children":null,"spread":false},{"title":"runparams.f90 <span style='color:#111;'> 1.26KB </span>","children":null,"spread":false},{"title":"output.f90 <span style='color:#111;'> 731B </span>","children":null,"spread":false},{"title":"inputs.double_rare <span style='color:#111;'> 130B </span>","children":null,"spread":false},{"title":"init.f90 <span style='color:#111;'> 681B </span>","children":null,"spread":false},{"title":"inputs.sod <span style='color:#111;'> 23B </span>","children":null,"spread":false},{"title":"euler.f90 <span style='color:#111;'> 1.70KB </span>","children":null,"spread":false},{"title":"inputs.slow_shock <span style='color:#111;'> 139B </span>","children":null,"spread":false},{"title":"grid.f90 <span style='color:#111;'> 1.22KB </span>","children":null,"spread":false},{"title":"riemann.f90 <span style='color:#111;'> 8.07KB </span>","children":null,"spread":false},{"title":"datatypes.f90 <span style='color:#111;'> 201B </span>","children":null,"spread":false},{"title":"util","children":[{"title":"dep.py <span style='color:#111;'> 3.19KB </span>","children":null,"spread":false}],"spread":false},{"title":"inputs.strong_shock <span style='color:#111;'> 134B </span>","children":null,"spread":false},{"title":"advection.f90 <span style='color:#111;'> 1.79KB </span>","children":null,"spread":false}],"spread":false},{"title":"README.md <span style='color:#111;'> 182B </span>","children":null,"spread":false}],"spread":false},{"title":"riemann_store_solution.py <span style='color:#111;'> 1.67KB </span>","children":null,"spread":false},{"title":"weno_euler.py <span style='color:#111;'> 14.76KB </span>","children":null,"spread":false},{"title":"weno_coefficients.py <span style='color:#111;'> 18.18KB </span>","children":null,"spread":false},{"title":"riemann-phase.py <span style='color:#111;'> 736B </span>","children":null,"spread":false},{"title":"riemann-2shock.py <span style='color:#111;'> 1.29KB </span>","children":null,"spread":false},{"title":"riemann-sod.py <span style='color:#111;'> 1.16KB </span>","children":null,"spread":false},{"title":"slow_shock.py <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false},{"title":"euler-conserved.ipynb <span style='color:#111;'> 23.95KB </span>","children":null,"spread":false},{"title":"euler-generaleos.ipynb <span style='color:#111;'> 219.02KB </span>","children":null,"spread":false},{"title":"eigen_help.py <span style='color:#111;'> 1.86KB </span>","children":null,"spread":false},{"title":"riemann-slow-shock.py <span style='color:#111;'> 1.60KB </span>","children":null,"spread":false}],"spread":false},{"title":"README.md <span style='color:#111;'> 4.40KB </span>","children":null,"spread":false},{"title":"burgers","children":[{"title":"weno_burgers.py <span style='color:#111;'> 9.93KB </span>","children":null,"spread":false},{"title":"weno_coefficients.py <span style='color:#111;'> 18.18KB </span>","children":null,"spread":false},{"title":"burgers.py <span style='color:#111;'> 7.29KB </span>","children":null,"spread":false}],"spread":true},{"title":"advection","children":[{"title":"weno.py <span style='color:#111;'> 14.90KB </span>","children":null,"spread":false},{"title":"fdadvect.py <span style='color:#111;'> 3.27KB </span>","children":null,"spread":false},{"title":"weno_coefficients.py <span style='color:#111;'> 18.18KB </span>","children":null,"spread":false},{"title":"Fortran","children":[{"title":"advect_new.f90 <span style='color:#111;'> 15.73KB </span>","children":null,"spread":false},{"title":"advect.f90 <span style='color:#111;'> 14.04KB </span>","children":null,"spread":false}],"spread":false},{"title":"fdadvect_implicit.py <span style='color:#111;'> 3.09KB </span>","children":null,"spread":false},{"title":"advection.py <span style='color:#111;'> 12.16KB </span>","children":null,"spread":false},{"title":"fv_mol.py <span style='color:#111;'> 5.56KB </span>","children":null,"spread":false}],"spread":true},{"title":"multiphysics","children":[{"title":"burgersvisc_converge.py <span style='color:#111;'> 1.13KB </span>","children":null,"spread":false},{"title":"burgersvisc.py <span style='color:#111;'> 7.73KB </span>","children":null,"spread":false},{"title":"diffusion-reaction.py <span style='color:#111;'> 6.44KB </span>","children":null,"spread":false}],"spread":true}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明