上传者: 38595356
|
上传时间: 2022-05-22 02:01:33
|
文件大小: 2.32MB
|
文件类型: PDF
最近几年,以微博为首的社交网络迅猛发展,这些平台上包含了网民对于时事热点的观点,对生活和人际关系的看法等大量有价值的信息和资源。由于微博数据非常庞大又难以获取等困难,如何有效地对社交网络进行数据挖掘,是近两年数据挖掘研究的重点和热点。本工作设计和实现了一个基于Hadoop 的并行社交网络挖掘系统,包含了分布式数据库,并行爬虫,并行数据处理和并行数据挖掘算法集,可以有效地获取和分析挖掘海量的社交网络数据,为社团分析,用户行为分析,用户分类,微博分类等工作提供支持。