改进U型网络的眼底视网膜血管分割方法

上传者: 38566180 | 上传时间: 2021-12-10 16:58:43 | 文件大小: 4.43MB | 文件类型: -
当前主流的眼底视网膜血管分割方法存在细微血管细粒度特征很难采集和细节容易丢失的问题。为解决这一问题,设计了一种改进U-Net模型算法,该算法将U-Net上下采样中的原始卷积层改为二次循环残差卷积层,提升了特征的使用效率;在解码部分引入多通道注意力模型,改善了低对比度下细小血管的分割效果。该算法在DRIVE (Digital Retinal Images for Vessel Extraction)和STARE (Structured Analysis of the Retina)两个数据库的准确率分别为96.89%和97.96%,敏感度分别为80.28%和82.27%,AUC(Area Under Curve)性能分别为98.41%和98.65%,较现有的先进算法有一定的提升。本文所提算法能有效提高眼底图像细微血管分割准确率。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明