用卷积滤波器matlab代码-LiteCNT:最先进的轻量级对象跟踪器(100KB)

上传者: 38540819 | 上传时间: 2022-12-04 20:43:15 | 文件大小: 5MB | 文件类型: ZIP
用卷积滤波器matlab代码 杨凌霄 该存储库包含未发布的技术报告的Matlab代码(也包含在此存储库中)。 声明:该报告已被一些顶级会议拒绝。 作者是个懒惰的人,不会重新提交任何其他会议或期刊。 但是作者本人认为这是一件好事,可能对其他人有所帮助。 介绍 最先进的轻量级跟踪器(大约100 KB) 先前有关回归跟踪器的大多数研究主要是探索用于特征提取的深层模型,然后使用复杂的体系结构进行在线检测。 这样的系统具有大量可训练的参数,从而带来严重过度拟合的风险。 而且,日益复杂的模型严重损害了许多实际应用的速度。 最近,已经提出了几种基于轻型结构的判别相关滤波器(DCF)来跟踪问题,而它们的性能却远远落后于一些最新的跟踪器。 我们认为,DCF经常学习单个线性模板,无法很好地将目标与周围环境区分开。 此外,在此类跟踪器中通过线性插值进行的模板更新将包括许多嘈杂的示例,从而降低了训练后的模型的质量。 在本文中,我们提出了一个简单而有效的系统,称为LiteCNT。 对于整个跟踪过程,我们的算法仅包含三个卷积层。 另外,引入了多区域卷积算子以进行回归输出。 这个想法很简单,但是功能强大,因为它使我

文件下载

资源详情

[{"title":"( 68 个子文件 5MB ) 用卷积滤波器matlab代码-LiteCNT:最先进的轻量级对象跟踪器(100KB)","children":[{"title":"LiteCNT-master","children":[{"title":"models","children":[{"title":"vggm-conv1.mat <span style='color:#111;'> 52.83KB </span>","children":null,"spread":false}],"spread":true},{"title":"headnet","children":[{"title":"init_det_baseconv.m <span style='color:#111;'> 1.59KB </span>","children":null,"spread":false},{"title":"init_det_amrconv.m <span style='color:#111;'> 2.50KB </span>","children":null,"spread":false}],"spread":true},{"title":"run_LiteCNT_ope.m <span style='color:#111;'> 542B </span>","children":null,"spread":false},{"title":"paper","children":[{"title":"LiteCNT-LX.Yang.pdf <span style='color:#111;'> 4.27MB </span>","children":null,"spread":false},{"title":"speed_auc_modelsize_otb2015_crop.png <span style='color:#111;'> 312.53KB </span>","children":null,"spread":false},{"title":"soa_otb100.png <span style='color:#111;'> 233.66KB </span>","children":null,"spread":false},{"title":"soa_uav123.png <span style='color:#111;'> 165.34KB </span>","children":null,"spread":false},{"title":"soa_lasot.png <span style='color:#111;'> 165.18KB </span>","children":null,"spread":false}],"spread":true},{"title":"vot","children":[{"title":"tracker_LiteCNT.m <span style='color:#111;'> 619B </span>","children":null,"spread":false},{"title":"run_LiteCNT_vot.m <span style='color:#111;'> 2.27KB </span>","children":null,"spread":false},{"title":"setup_LiteCNT_vot.m <span style='color:#111;'> 267B </span>","children":null,"spread":false}],"spread":true},{"title":"tracking","children":[{"title":"tracker","children":[{"title":"tracker_OPE.m <span style='color:#111;'> 2.06KB </span>","children":null,"spread":false}],"spread":true},{"title":"option","children":[{"title":"setting_lcnt_default.m <span style='color:#111;'> 2.54KB </span>","children":null,"spread":false}],"spread":true},{"title":"LiteCNT","children":[{"title":"lcnt_initialize.m <span style='color:#111;'> 1.49KB </span>","children":null,"spread":false},{"title":"lcnt_finetune.m <span style='color:#111;'> 2.71KB </span>","children":null,"spread":false},{"title":"lcnt_extract_feature.m <span style='color:#111;'> 410B </span>","children":null,"spread":false},{"title":"lcnt_update.m <span style='color:#111;'> 560B </span>","children":null,"spread":false},{"title":"lcnt_track.m <span style='color:#111;'> 2.36KB </span>","children":null,"spread":false},{"title":"lcnt_release.m <span style='color:#111;'> 100B </span>","children":null,"spread":false},{"title":"lcnt_get_opts.m <span style='color:#111;'> 1.63KB </span>","children":null,"spread":false},{"title":"lcnt_state_initialize.m <span style='color:#111;'> 3.83KB </span>","children":null,"spread":false},{"title":"lcnt_warmup.m <span style='color:#111;'> 1.22KB </span>","children":null,"spread":false}],"spread":true},{"title":"eval_tracker.m <span style='color:#111;'> 1.99KB </span>","children":null,"spread":false}],"spread":true},{"title":"layers","children":[{"title":"+dagnn","children":[{"title":"LossL2.m <span style='color:#111;'> 1.59KB </span>","children":null,"spread":false},{"title":"AMRConv.m <span style='color:#111;'> 1.14KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"vidhelper","children":[{"title":"+Video","children":[{"title":"TC.m <span style='color:#111;'> 2.44KB </span>","children":null,"spread":false},{"title":"NFS.m <span style='color:#111;'> 2.24KB </span>","children":null,"spread":false},{"title":"OTB.m <span style='color:#111;'> 3.26KB </span>","children":null,"spread":false},{"title":"UAV123.m <span style='color:#111;'> 1.48KB </span>","children":null,"spread":false},{"title":"LaSOT.m <span style='color:#111;'> 1.80KB </span>","children":null,"spread":false},{"title":"TrackingNet.m <span style='color:#111;'> 1.24KB </span>","children":null,"spread":false}],"spread":true},{"title":"+Dataset","children":[{"title":"TC128.m <span style='color:#111;'> 81B </span>","children":null,"spread":false},{"title":"OTBAttr.m <span style='color:#111;'> 7.17KB </span>","children":null,"spread":false},{"title":"OTB50.m <span style='color:#111;'> 1.30KB </span>","children":null,"spread":false},{"title":"NFS.m <span style='color:#111;'> 79B </span>","children":null,"spread":false},{"title":"UAV123.m <span style='color:#111;'> 193B </span>","children":null,"spread":false},{"title":"LaSOT.m <span style='color:#111;'> 666B </span>","children":null,"spread":false},{"title":"OTB2015.m <span style='color:#111;'> 2.54KB </span>","children":null,"spread":false},{"title":"TrackingNet.m <span style='color:#111;'> 98B </span>","children":null,"spread":false},{"title":"OTB2013.m <span style='color:#111;'> 1.33KB </span>","children":null,"spread":false}],"spread":true},{"title":"utils","children":[{"title":"get_dir_names.m <span style='color:#111;'> 196B </span>","children":null,"spread":false},{"title":"uav123_config.m <span style='color:#111;'> 17.67KB </span>","children":null,"spread":false}],"spread":true},{"title":"config_dataset.m <span style='color:#111;'> 1.62KB </span>","children":null,"spread":false}],"spread":true},{"title":".gitignore <span style='color:#111;'> 14B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 5.92KB </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"xywh_to_ccwh.m <span style='color:#111;'> 116B </span>","children":null,"spread":false},{"title":"ccwh_to_xywh.m <span style='color:#111;'> 73B </span>","children":null,"spread":false},{"title":"generate_bilinear_grids.m <span style='color:#111;'> 581B </span>","children":null,"spread":false},{"title":"aug_img.m <span style='color:#111;'> 932B </span>","children":null,"spread":false},{"title":"sub_average_img.m <span style='color:#111;'> 253B </span>","children":null,"spread":false},{"title":"init_featrnet.m <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false},{"title":"change_lr_wd.m <span style='color:#111;'> 412B </span>","children":null,"spread":false},{"title":"init_weights.m <span style='color:#111;'> 301B </span>","children":null,"spread":false},{"title":"sort_layers.m <span style='color:#111;'> 363B </span>","children":null,"spread":false},{"title":"pmem.m <span style='color:#111;'> 338B </span>","children":null,"spread":false},{"title":"read_img.m <span style='color:#111;'> 135B </span>","children":null,"spread":false},{"title":"get_axis_aligned_BB.m <span style='color:#111;'> 733B </span>","children":null,"spread":false},{"title":"get_input_size.m <span style='color:#111;'> 743B </span>","children":null,"spread":false},{"title":"crop_roi.m <span style='color:#111;'> 701B </span>","children":null,"spread":false},{"title":"normalize_feature.m <span style='color:#111;'> 213B </span>","children":null,"spread":false},{"title":"get_model_size.m <span style='color:#111;'> 248B </span>","children":null,"spread":false},{"title":"accumulate_gradients.m <span style='color:#111;'> 1.14KB </span>","children":null,"spread":false},{"title":"assign_value.m <span style='color:#111;'> 258B </span>","children":null,"spread":false},{"title":"generate_gaussian_label.m <span style='color:#111;'> 406B </span>","children":null,"spread":false},{"title":"split_net.m <span style='color:#111;'> 291B </span>","children":null,"spread":false},{"title":"get_last_pindex.m <span style='color:#111;'> 98B </span>","children":null,"spread":false}],"spread":false},{"title":"setup_LiteCNT.m <span style='color:#111;'> 656B </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明