使用ResNet50深度神经网络架构的手语识别-研究论文

上传者: 38539705 | 上传时间: 2022-12-04 13:33:12 | 文件大小: 549KB | 文件类型: PDF
沟通是聋哑社区和社会其他成员之间的障碍。 手语用于在这些不会说话和听不懂的人之间进行交流。 在过去的几年中,手语识别的自动化已引起研究人员的关注。 已经开发了许多复杂且昂贵的硬件系统来辅助该目的。 但是,我们建议使用深度学习方法进行自动手语识别。 我们设计了一种基于ResNet50的新型2级深度神经网络体系结构来对拼写单词进行分类。 使用的数据集是标准的[1]的美国手语手势数据集。 首先使用各种扩充技术来扩充数据集。 在基于2级ResNet50的方法中,1级模型将输入图像分类为4组之一。 在将图像分类为一组图像之后,将其提供为相应的第二级模型的输入,以用于预测图像的实际类别。 我们的方法在12,048张测试图像上产生了99.03%的精度。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明