ResNet-101 网络的深度学习工具箱模型:用于图像分类的预训练 Resnet-101 网络模型-matlab开发

上传者: 38537684 | 上传时间: 2021-10-16 09:52:21 | 文件大小: 6KB | 文件类型: -
ResNet-101 是一个预训练模型,已经在 ImageNet 数据库的一个子集上进行了训练。 该模型在超过一百万张图像上进行训练,共有 347 层,对应于 101 层残差网络,可以将图像分为 1000 个对象类别(例如键盘、鼠标、铅笔和许多动物)。 从您的操作系统或 MATLAB 中打开 resnet101.mlpkginstall 文件将启动您拥有的版本的安装过程。 该mlpkginstall文件可用于R2017b及更高版本。 用法示例: % 访问训练好的模型净 = resnet101(); % 查看架构细节网络层% 读取图像进行分类I = imread('peppers.png'); % 调整图片大小sz = net.Layers(1).InputSize I = I(1:sz(1),1:sz(2),1:sz(3)); % 使用 Resnet-101 对图像进行分类标签 = 分类(

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明