上传者: 38522253
|
上传时间: 2021-08-12 14:35:49
|
文件大小: 491KB
|
文件类型: PDF
基于KMeans聚类的协同过滤推荐算法可运用于基于用户和基于项目的协同过滤推荐算法中,作为降低数据稀疏度和提高推荐准确率的方法之一,一个协同过滤推荐过程可实现多次KMeans聚类。
一、基于KMeans聚类的协同过滤推荐算法推荐原理
KMeans聚类算法是聚类算法中最基础最常用、最重要的聚类算法。KMeans聚类算法首先需要确定N个初始中心点,初始中心点的选择对聚类结果影响很大,常用的初始中心点的选择有随机选择、自定义、采用Canopy聚类算法结果作为初始中心点,然后是重复遍历点与簇中心的距离,并不断修正簇中心点,可设置遍历次数和点与簇中心的最小距离影响聚类结果。
聚类的数据可以是一维数组、二