从YOLOV3到YOLOV4:算法原理及其实战

上传者: 26911099 | 上传时间: 2021-12-14 21:53:58 | 文件大小: 1.41GB | 文件类型: -
本课程在介绍计算机视觉深度学习基本概念基础上,详尽讲解YOLOV3和YOLOV4的算法模型原理,并基于实际项目中的无人零售商品数据集来手把手教大家如何将它训练成YOLOV3和V4模型,最后对训练出来的模型集进行性能评估,从而挑选出最优模型。 课程主要分为九大章: 1。课程内容介绍、特色及其答疑2。计算机视觉深度学习基本概念及其yolo1,2,3的模型结构讲解3。darknet框架介绍及其安装4。darknet训练和推理代码的梳理5。基于darknet框架训练一个无人零售商品数据集 上半部6。基于darknet框架训练一个无人零售商品数据集 下半部7。模型评估指标(训练过程的loss和iou曲线显示,PR,RECALL,AP以及MAP的计算)8。YOLOV4算法模型原理讲解9。YOLOV4算法模型的训练和测试

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明