混沌计算工具箱

上传者: u014198507 | 上传时间: 2023-09-17 15:42:36 | 文件大小: 1.15MB | 文件类型: ZIP
混沌计算工具箱:产生混沌时间序列、求时延的、求嵌入维数、同时求时延与嵌入窗口、求关联维数、求最大Lyapunov指数的

文件下载

资源详情

[{"title":"( 124 个子文件 1.15MB ) 混沌计算工具箱","children":[{"title":"SearchNN_Buffer2.dll <span style='color:#111;'> 125.50KB </span>","children":null,"spread":false},{"title":"SearchNN_Buffer2.dll <span style='color:#111;'> 125.50KB </span>","children":null,"spread":false},{"title":"SearchNN_Buffer2.dll <span style='color:#111;'> 125.50KB </span>","children":null,"spread":false},{"title":"SearchNN_Buffer1.dll <span style='color:#111;'> 117.50KB </span>","children":null,"spread":false},{"title":"SearchNN_Buffer1.dll <span style='color:#111;'> 117.50KB </span>","children":null,"spread":false},{"title":"SearchNN_Buffer1.dll <span style='color:#111;'> 117.50KB </span>","children":null,"spread":false},{"title":"cao_buffer.dll <span style='color:#111;'> 107.00KB </span>","children":null,"spread":false},{"title":"buffer.dll <span style='color:#111;'> 28.50KB </span>","children":null,"spread":false},{"title":"LorenzData.dll <span style='color:#111;'> 20.00KB </span>","children":null,"spread":false},{"title":"CorrelationIntegral.dll <span style='color:#111;'> 20.00KB </span>","children":null,"spread":false},{"title":"LorenzData.dll <span style='color:#111;'> 20.00KB </span>","children":null,"spread":false},{"title":"LorenzData.dll <span style='color:#111;'> 20.00KB </span>","children":null,"spread":false},{"title":"LorenzData.dll <span style='color:#111;'> 20.00KB </span>","children":null,"spread":false},{"title":"LorenzData.dll <span style='color:#111;'> 20.00KB </span>","children":null,"spread":false},{"title":"cao_luzhenbo.dll <span style='color:#111;'> 20.00KB </span>","children":null,"spread":false},{"title":"LorenzData.dll <span style='color:#111;'> 20.00KB </span>","children":null,"spread":false},{"title":"LorenzData.dll <span style='color:#111;'> 20.00KB </span>","children":null,"spread":false},{"title":"LorenzData.dll <span style='color:#111;'> 20.00KB </span>","children":null,"spread":false},{"title":"LorenzData.dll <span style='color:#111;'> 20.00KB </span>","children":null,"spread":false},{"title":"DuffingData.dll <span style='color:#111;'> 20.00KB </span>","children":null,"spread":false},{"title":"LorenzData.dll <span style='color:#111;'> 20.00KB </span>","children":null,"spread":false},{"title":"LorenzData.dll <span style='color:#111;'> 20.00KB </span>","children":null,"spread":false},{"title":"RosslerData.dll <span style='color:#111;'> 20.00KB </span>","children":null,"spread":false},{"title":"CorrelationIntegral.dll <span style='color:#111;'> 20.00KB </span>","children":null,"spread":false},{"title":"LorenzData.dll <span style='color:#111;'> 20.00KB </span>","children":null,"spread":false},{"title":"CC_luzhenbo.dll <span style='color:#111;'> 20.00KB </span>","children":null,"spread":false},{"title":"DuffingData2.dll <span style='color:#111;'> 20.00KB </span>","children":null,"spread":false},{"title":"LorenzData.dll <span style='color:#111;'> 20.00KB </span>","children":null,"spread":false},{"title":"ChensData.dll <span style='color:#111;'> 20.00KB </span>","children":null,"spread":false},{"title":"LorenzData.dll <span style='color:#111;'> 20.00KB </span>","children":null,"spread":false},{"title":"Mutual_Information.dll <span style='color:#111;'> 20.00KB </span>","children":null,"spread":false},{"title":"KolmogorovEntropy.dll <span style='color:#111;'> 20.00KB </span>","children":null,"spread":false},{"title":"dla.gif <span style='color:#111;'> 29.89KB </span>","children":null,"spread":false},{"title":"dla.gif <span style='color:#111;'> 29.89KB </span>","children":null,"spread":false},{"title":"Main_KolmogorovEntropy_GP.m <span style='color:#111;'> 2.79KB </span>","children":null,"spread":false},{"title":"Main_CorrelationDimension_GP.m <span style='color:#111;'> 2.26KB </span>","children":null,"spread":false},{"title":"Main_RBF_MultiStepPred.m <span style='color:#111;'> 2.11KB </span>","children":null,"spread":false},{"title":"Main_Volterra_MultiStepPred.m <span style='color:#111;'> 2.01KB </span>","children":null,"spread":false},{"title":"Main_LyapunovSpectrum_BBA2.m <span style='color:#111;'> 1.90KB </span>","children":null,"spread":false},{"title":"Main_RBF.m <span style='color:#111;'> 1.89KB </span>","children":null,"spread":false},{"title":"Main_Volterra.m <span style='color:#111;'> 1.79KB </span>","children":null,"spread":false},{"title":"Main_KolmogorovEntropy_STB.m <span style='color:#111;'> 1.78KB </span>","children":null,"spread":false},{"title":"Main_LyapunovSpectrum_BBA1.m <span style='color:#111;'> 1.76KB </span>","children":null,"spread":false},{"title":"Main_SurrogateData.m <span style='color:#111;'> 1.62KB </span>","children":null,"spread":false},{"title":"Main_LargestLyapunov_Rosenstein3.m <span style='color:#111;'> 1.50KB </span>","children":null,"spread":false},{"title":"Main_EmbeddingDimension_FNN.m <span style='color:#111;'> 1.47KB </span>","children":null,"spread":false},{"title":"Main_LargestLyapunov_Rosenstein4.m <span style='color:#111;'> 1.46KB </span>","children":null,"spread":false},{"title":"Main_EmbeddingDimension_Cao.m <span style='color:#111;'> 1.44KB </span>","children":null,"spread":false},{"title":"Main_Mutual_Information.m <span style='color:#111;'> 1.35KB </span>","children":null,"spread":false},{"title":"Main_LargestLyapunov_Rosenstein1.m <span style='color:#111;'> 1.34KB </span>","children":null,"spread":false},{"title":"Main_LargestLyapunov_Rosenstein2.m <span style='color:#111;'> 1.32KB </span>","children":null,"spread":false},{"title":"Main_Ikeda.m <span style='color:#111;'> 1.21KB </span>","children":null,"spread":false},{"title":"Main_CC_Luzhenbo.m <span style='color:#111;'> 1.19KB </span>","children":null,"spread":false},{"title":"Main_GeneralizedDimension_TS.m <span style='color:#111;'> 1.12KB </span>","children":null,"spread":false},{"title":"Main_Lorenz.m <span style='color:#111;'> 1.07KB </span>","children":null,"spread":false},{"title":"Main_BoxDimension_TS.m <span style='color:#111;'> 1.06KB </span>","children":null,"spread":false},{"title":"Main_Rossler.m <span style='color:#111;'> 1.05KB </span>","children":null,"spread":false},{"title":"Main_ComplexAutoCorrelation.m <span style='color:#111;'> 1008B </span>","children":null,"spread":false},{"title":"Main_Duffing2.m <span style='color:#111;'> 991B </span>","children":null,"spread":false},{"title":"Main_Duffing.m <span style='color:#111;'> 989B </span>","children":null,"spread":false},{"title":"Main_AutoCorrelation.m <span style='color:#111;'> 986B </span>","children":null,"spread":false},{"title":"Main_AverageDisplacement.m <span style='color:#111;'> 983B </span>","children":null,"spread":false},{"title":"Main_Chens.m <span style='color:#111;'> 950B </span>","children":null,"spread":false},{"title":"Main_GeneralizedDimension_2D.m <span style='color:#111;'> 934B </span>","children":null,"spread":false},{"title":"Main_Henon.m <span style='color:#111;'> 929B </span>","children":null,"spread":false},{"title":"Main_BoxDimension_2D.m <span style='color:#111;'> 917B </span>","children":null,"spread":false},{"title":"Main_Logistic.m <span style='color:#111;'> 893B </span>","children":null,"spread":false},{"title":"install.m <span style='color:#111;'> 780B </span>","children":null,"spread":false},{"title":"Main_MackeyGLass.m <span style='color:#111;'> 639B </span>","children":null,"spread":false},{"title":"createmgdde23.m <span style='color:#111;'> 538B </span>","children":null,"spread":false},{"title":"Main_Quadratic.m <span style='color:#111;'> 468B </span>","children":null,"spread":false},{"title":"Contents.m <span style='color:#111;'> 50B </span>","children":null,"spread":false},{"title":"Contents.m <span style='color:#111;'> 49B </span>","children":null,"spread":false},{"title":"Contents.m <span style='color:#111;'> 47B </span>","children":null,"spread":false},{"title":"Contents.m <span style='color:#111;'> 42B </span>","children":null,"spread":false},{"title":"Contents.m <span style='color:#111;'> 42B </span>","children":null,"spread":false},{"title":"Contents.m <span style='color:#111;'> 35B </span>","children":null,"spread":false},{"title":"Contents.m <span style='color:#111;'> 33B </span>","children":null,"spread":false},{"title":"Contents.m <span style='color:#111;'> 32B </span>","children":null,"spread":false},{"title":"Contents.m <span style='color:#111;'> 27B </span>","children":null,"spread":false},{"title":"Contents.m <span style='color:#111;'> 25B </span>","children":null,"spread":false},{"title":"Contents.m <span style='color:#111;'> 25B </span>","children":null,"spread":false},{"title":"Contents.m <span style='color:#111;'> 25B </span>","children":null,"spread":false},{"title":"Contents.m <span style='color:#111;'> 24B </span>","children":null,"spread":false},{"title":"Contents.m <span style='color:#111;'> 24B </span>","children":null,"spread":false},{"title":"Contents.m <span style='color:#111;'> 22B </span>","children":null,"spread":false},{"title":"Contents.m <span style='color:#111;'> 20B </span>","children":null,"spread":false},{"title":"Contents.m <span style='color:#111;'> 18B </span>","children":null,"spread":false},{"title":"Contents.m <span style='color:#111;'> 17B </span>","children":null,"spread":false},{"title":"wfbm.p <span style='color:#111;'> 11.23KB </span>","children":null,"spread":false},{"title":"wfbm.p <span style='color:#111;'> 11.23KB </span>","children":null,"spread":false},{"title":"GeneralizedDimension_TS.p <span style='color:#111;'> 9.54KB </span>","children":null,"spread":false},{"title":"BoxDimension_TS.p <span style='color:#111;'> 8.48KB </span>","children":null,"spread":false},{"title":"GeneralizedDimension_2D.p <span style='color:#111;'> 7.93KB </span>","children":null,"spread":false},{"title":"LyapunovSpectrum_BBA.p <span style='color:#111;'> 6.90KB </span>","children":null,"spread":false},{"title":"BoxDimension_2D.p <span style='color:#111;'> 6.80KB </span>","children":null,"spread":false},{"title":"Lyapunov_rosenstein_2.p <span style='color:#111;'> 5.89KB </span>","children":null,"spread":false},{"title":"FNN.p <span style='color:#111;'> 5.84KB </span>","children":null,"spread":false},{"title":"SurrogateData.p <span style='color:#111;'> 5.24KB </span>","children":null,"spread":false},{"title":"LM2.p <span style='color:#111;'> 4.86KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明