[{"title":"( 63 个子文件 785KB ) 机器学习算法,包含随机森林,决策树,SVM,CNN等十几种算法的程序包","children":[{"title":"机器学习算法Python-Machine-Learning-Algorithm-master","children":[{"title":"Chapter_6 BP","children":[{"title":"bp_test.py <span style='color:#111;'> 2.85KB </span>","children":null,"spread":false},{"title":"bp_train.py <span style='color:#111;'> 7.94KB </span>","children":null,"spread":false},{"title":"data.txt <span style='color:#111;'> 14.70KB </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter_7 LinearRegression","children":[{"title":"local_weight_regression.py <span style='color:#111;'> 934B </span>","children":null,"spread":false},{"title":"data_test.txt <span style='color:#111;'> 2.93KB </span>","children":null,"spread":false},{"title":"linear_regression_train.py <span style='color:#111;'> 4.17KB </span>","children":null,"spread":false},{"title":"data.txt <span style='color:#111;'> 7.08KB </span>","children":null,"spread":false},{"title":"linear_regression_test.py <span style='color:#111;'> 1.61KB </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter_1 Logistic Regression","children":[{"title":"lr_train.py <span style='color:#111;'> 2.84KB </span>","children":null,"spread":false},{"title":"lr_test.py <span style='color:#111;'> 2.36KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 32B </span>","children":null,"spread":false},{"title":"test_data <span style='color:#111;'> 6.69KB </span>","children":null,"spread":false},{"title":"data.txt <span style='color:#111;'> 7.08KB </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter_8 RidgeRegression","children":[{"title":"ridge_regression_train.py <span style='color:#111;'> 6.01KB </span>","children":null,"spread":false},{"title":"data_test.txt <span style='color:#111;'> 6.53KB </span>","children":null,"spread":false},{"title":"data.txt <span style='color:#111;'> 9.83KB </span>","children":null,"spread":false},{"title":"ridge_regression_test.py <span style='color:#111;'> 1.79KB </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter_4 SVM","children":[{"title":"svm_train.py <span style='color:#111;'> 2.45KB </span>","children":null,"spread":false},{"title":"svm_test.py <span style='color:#111;'> 3.45KB </span>","children":null,"spread":false},{"title":"svm.py <span style='color:#111;'> 12.02KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"svm.cpython-36.pyc <span style='color:#111;'> 6.58KB </span>","children":null,"spread":false}],"spread":true},{"title":"heart_scale <span style='color:#111;'> 27.02KB </span>","children":null,"spread":false},{"title":"model_file <span style='color:#111;'> 605.97KB </span>","children":null,"spread":false},{"title":"svm_test_data <span style='color:#111;'> 6.72KB </span>","children":null,"spread":false},{"title":"result <span style='color:#111;'> 320B </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter_11 MeanShift","children":[{"title":"mean_shift.py <span style='color:#111;'> 5.49KB </span>","children":null,"spread":false},{"title":"data <span style='color:#111;'> 2.93KB </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter_2 Softmax Regression","children":[{"title":"SoftInput.txt <span style='color:#111;'> 3.06KB </span>","children":null,"spread":false},{"title":"softmax_regression_test.py <span style='color:#111;'> 2.22KB </span>","children":null,"spread":false},{"title":"softmax_regression_train.py <span style='color:#111;'> 2.94KB </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter_15 MatrixFactorization","children":[{"title":"mf.py <span style='color:#111;'> 4.22KB </span>","children":null,"spread":false},{"title":"nmf.py <span style='color:#111;'> 1.68KB </span>","children":null,"spread":false},{"title":"data.txt <span style='color:#111;'> 50B </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter_13 LabelPropagation","children":[{"title":"cd_data.txt <span style='color:#111;'> 131B </span>","children":null,"spread":false},{"title":"lb.py <span style='color:#111;'> 4.25KB </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter_10 KMeans","children":[{"title":"KMeans.py <span style='color:#111;'> 4.18KB </span>","children":null,"spread":false},{"title":"KMeanspp.py <span style='color:#111;'> 2.68KB </span>","children":null,"spread":false},{"title":"data.txt <span style='color:#111;'> 2.73KB </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter_9 CART","children":[{"title":"train_cart.py <span style='color:#111;'> 5.48KB </span>","children":null,"spread":false},{"title":"sine.txt <span style='color:#111;'> 3.59KB </span>","children":null,"spread":false},{"title":"test_cart.py <span style='color:#111;'> 1.95KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 4.15KB </span>","children":null,"spread":false},{"title":"Chapter12_DBSCAN","children":[{"title":"data.txt <span style='color:#111;'> 1.48KB </span>","children":null,"spread":false},{"title":"dbscan.py <span style='color:#111;'> 4.52KB </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter_14 CollaborativeFiltering","children":[{"title":"item_based_recommend.py <span style='color:#111;'> 2.33KB </span>","children":null,"spread":false},{"title":"user_based_recommend.py <span style='color:#111;'> 3.65KB </span>","children":null,"spread":false},{"title":"data.txt <span style='color:#111;'> 50B </span>","children":null,"spread":false}],"spread":false},{"title":"Chapter_5 Random Forest","children":[{"title":"result_file <span style='color:#111;'> 231.19KB </span>","children":null,"spread":false},{"title":"test_data.txt <span style='color:#111;'> 69.00KB </span>","children":null,"spread":false},{"title":"feature_file <span style='color:#111;'> 250B </span>","children":null,"spread":false},{"title":"tree.py <span style='color:#111;'> 5.42KB </span>","children":null,"spread":false},{"title":"random_forests_train.py <span style='color:#111;'> 6.34KB </span>","children":null,"spread":false},{"title":"final_result <span style='color:#111;'> 81.55KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"tree.cpython-36.pyc <span style='color:#111;'> 3.04KB </span>","children":null,"spread":false},{"title":"random_forests_train.cpython-36.pyc <span style='color:#111;'> 4.00KB </span>","children":null,"spread":false}],"spread":false},{"title":"data.txt <span style='color:#111;'> 14.47KB </span>","children":null,"spread":false},{"title":"random_forests_test.py <span style='color:#111;'> 3.31KB </span>","children":null,"spread":false}],"spread":false},{"title":"Chapter_3 Factorization Machine","children":[{"title":"test_data.txt <span style='color:#111;'> 7.05KB </span>","children":null,"spread":false},{"title":"FM_test.py <span style='color:#111;'> 1.77KB </span>","children":null,"spread":false},{"title":"FM_train.py <span style='color:#111;'> 5.83KB </span>","children":null,"spread":false},{"title":"data.txt <span style='color:#111;'> 7.45KB </span>","children":null,"spread":false}],"spread":false},{"title":"Chapter_16 PersonalRank","children":[{"title":"personal_rank.py <span style='color:#111;'> 3.19KB </span>","children":null,"spread":false},{"title":"data.txt <span style='color:#111;'> 50B </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":true}]