机器学习算法,包含随机森林,决策树,SVM,CNN等十几种算法的程序包

上传者: u011358529 | 上传时间: 2019-12-21 21:22:13 | 文件大小: 785KB | 文件类型: zip
机器学习算法,包含随机森林,决策树,SVM,CNN等十几种算法的程序包

文件下载

资源详情

[{"title":"( 63 个子文件 785KB ) 机器学习算法,包含随机森林,决策树,SVM,CNN等十几种算法的程序包","children":[{"title":"机器学习算法Python-Machine-Learning-Algorithm-master","children":[{"title":"Chapter_6 BP","children":[{"title":"bp_test.py <span style='color:#111;'> 2.85KB </span>","children":null,"spread":false},{"title":"bp_train.py <span style='color:#111;'> 7.94KB </span>","children":null,"spread":false},{"title":"data.txt <span style='color:#111;'> 14.70KB </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter_7 LinearRegression","children":[{"title":"local_weight_regression.py <span style='color:#111;'> 934B </span>","children":null,"spread":false},{"title":"data_test.txt <span style='color:#111;'> 2.93KB </span>","children":null,"spread":false},{"title":"linear_regression_train.py <span style='color:#111;'> 4.17KB </span>","children":null,"spread":false},{"title":"data.txt <span style='color:#111;'> 7.08KB </span>","children":null,"spread":false},{"title":"linear_regression_test.py <span style='color:#111;'> 1.61KB </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter_1 Logistic Regression","children":[{"title":"lr_train.py <span style='color:#111;'> 2.84KB </span>","children":null,"spread":false},{"title":"lr_test.py <span style='color:#111;'> 2.36KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 32B </span>","children":null,"spread":false},{"title":"test_data <span style='color:#111;'> 6.69KB </span>","children":null,"spread":false},{"title":"data.txt <span style='color:#111;'> 7.08KB </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter_8 RidgeRegression","children":[{"title":"ridge_regression_train.py <span style='color:#111;'> 6.01KB </span>","children":null,"spread":false},{"title":"data_test.txt <span style='color:#111;'> 6.53KB </span>","children":null,"spread":false},{"title":"data.txt <span style='color:#111;'> 9.83KB </span>","children":null,"spread":false},{"title":"ridge_regression_test.py <span style='color:#111;'> 1.79KB </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter_4 SVM","children":[{"title":"svm_train.py <span style='color:#111;'> 2.45KB </span>","children":null,"spread":false},{"title":"svm_test.py <span style='color:#111;'> 3.45KB </span>","children":null,"spread":false},{"title":"svm.py <span style='color:#111;'> 12.02KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"svm.cpython-36.pyc <span style='color:#111;'> 6.58KB </span>","children":null,"spread":false}],"spread":true},{"title":"heart_scale <span style='color:#111;'> 27.02KB </span>","children":null,"spread":false},{"title":"model_file <span style='color:#111;'> 605.97KB </span>","children":null,"spread":false},{"title":"svm_test_data <span style='color:#111;'> 6.72KB </span>","children":null,"spread":false},{"title":"result <span style='color:#111;'> 320B </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter_11 MeanShift","children":[{"title":"mean_shift.py <span style='color:#111;'> 5.49KB </span>","children":null,"spread":false},{"title":"data <span style='color:#111;'> 2.93KB </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter_2 Softmax Regression","children":[{"title":"SoftInput.txt <span style='color:#111;'> 3.06KB </span>","children":null,"spread":false},{"title":"softmax_regression_test.py <span style='color:#111;'> 2.22KB </span>","children":null,"spread":false},{"title":"softmax_regression_train.py <span style='color:#111;'> 2.94KB </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter_15 MatrixFactorization","children":[{"title":"mf.py <span style='color:#111;'> 4.22KB </span>","children":null,"spread":false},{"title":"nmf.py <span style='color:#111;'> 1.68KB </span>","children":null,"spread":false},{"title":"data.txt <span style='color:#111;'> 50B </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter_13 LabelPropagation","children":[{"title":"cd_data.txt <span style='color:#111;'> 131B </span>","children":null,"spread":false},{"title":"lb.py <span style='color:#111;'> 4.25KB </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter_10 KMeans","children":[{"title":"KMeans.py <span style='color:#111;'> 4.18KB </span>","children":null,"spread":false},{"title":"KMeanspp.py <span style='color:#111;'> 2.68KB </span>","children":null,"spread":false},{"title":"data.txt <span style='color:#111;'> 2.73KB </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter_9 CART","children":[{"title":"train_cart.py <span style='color:#111;'> 5.48KB </span>","children":null,"spread":false},{"title":"sine.txt <span style='color:#111;'> 3.59KB </span>","children":null,"spread":false},{"title":"test_cart.py <span style='color:#111;'> 1.95KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 4.15KB </span>","children":null,"spread":false},{"title":"Chapter12_DBSCAN","children":[{"title":"data.txt <span style='color:#111;'> 1.48KB </span>","children":null,"spread":false},{"title":"dbscan.py <span style='color:#111;'> 4.52KB </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter_14 CollaborativeFiltering","children":[{"title":"item_based_recommend.py <span style='color:#111;'> 2.33KB </span>","children":null,"spread":false},{"title":"user_based_recommend.py <span style='color:#111;'> 3.65KB </span>","children":null,"spread":false},{"title":"data.txt <span style='color:#111;'> 50B </span>","children":null,"spread":false}],"spread":false},{"title":"Chapter_5 Random Forest","children":[{"title":"result_file <span style='color:#111;'> 231.19KB </span>","children":null,"spread":false},{"title":"test_data.txt <span style='color:#111;'> 69.00KB </span>","children":null,"spread":false},{"title":"feature_file <span style='color:#111;'> 250B </span>","children":null,"spread":false},{"title":"tree.py <span style='color:#111;'> 5.42KB </span>","children":null,"spread":false},{"title":"random_forests_train.py <span style='color:#111;'> 6.34KB </span>","children":null,"spread":false},{"title":"final_result <span style='color:#111;'> 81.55KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"tree.cpython-36.pyc <span style='color:#111;'> 3.04KB </span>","children":null,"spread":false},{"title":"random_forests_train.cpython-36.pyc <span style='color:#111;'> 4.00KB </span>","children":null,"spread":false}],"spread":false},{"title":"data.txt <span style='color:#111;'> 14.47KB </span>","children":null,"spread":false},{"title":"random_forests_test.py <span style='color:#111;'> 3.31KB </span>","children":null,"spread":false}],"spread":false},{"title":"Chapter_3 Factorization Machine","children":[{"title":"test_data.txt <span style='color:#111;'> 7.05KB </span>","children":null,"spread":false},{"title":"FM_test.py <span style='color:#111;'> 1.77KB </span>","children":null,"spread":false},{"title":"FM_train.py <span style='color:#111;'> 5.83KB </span>","children":null,"spread":false},{"title":"data.txt <span style='color:#111;'> 7.45KB </span>","children":null,"spread":false}],"spread":false},{"title":"Chapter_16 PersonalRank","children":[{"title":"personal_rank.py <span style='color:#111;'> 3.19KB </span>","children":null,"spread":false},{"title":"data.txt <span style='color:#111;'> 50B </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明