双流3D视频动作识别

上传者: u011049137 | 上传时间: 2021-09-25 11:29:08 | 文件大小: 983KB | 文件类型: PDF
3-D convolutional neural networks (3-D-convNets) have been very recently proposed for action recognition in videos, and promising results are achieved. However, existing 3- D-convNets has two “artificial” requirements that may reduce the quality of video analysis: 1) It requires a fixed-sized (e.g., 112×112) input video; and 2)most of the 3-D-convNets require a fixed-length input (i.e., video shots with fixed number of frames). To tackle these issues, we propose an end-to-end pipeline named Two-stream 3-D-convNet Fusion, which can recognize human actions in videos of arbitrary size and length using multiple features. Specifically, we decompose a video into spatial and temporal shots. By taking a sequence of shots as input, each stream is implemented using a spatial temporal pyramid pooling (STPP) convNet with a long short-term memory (LSTM) or CNN-E model, softmax scores of which are combined by a late fusion.We devise the STPP convNet to extract equal-dimensional descriptions for each variable-size shot, andwe adopt theLSTM/CNN-Emodel to learn a global description for the input video using these time-varying descriptions. With these advantages, our method should improve all 3-D CNN-based video analysis methods. We empirically evaluate our method for action recognition in videos and the experimental results show that our method outperforms the state-of-the-art methods (both 2-D and 3-D based) on three standard benchmark datasets (UCF101, HMDB51 and ACT datasets).

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明