[{"title":"( 15 个子文件 17.32MB ) nips2020model-based rl.zip","children":[{"title":"NeurIPS-2020-the-value-equivalence-principle-for-model-based-reinforcement-learning-Paper.pdf <span style='color:#111;'> 583.96KB </span>","children":null,"spread":false},{"title":"NeurIPS-2020-stochastic-latent-actor-critic-deep-reinforcement-learning-with-a-latent-variable-model-Paper.pdf <span style='color:#111;'> 1002.73KB </span>","children":null,"spread":false},{"title":"NeurIPS-2020-the-loca-regret-a-consistent-metric-to-evaluate-model-based-behavior-in-reinforcement-learning-Paper.pdf <span style='color:#111;'> 886.87KB </span>","children":null,"spread":false},{"title":"NeurIPS-2020-morel-model-based-offline-reinforcement-learning-Paper.pdf <span style='color:#111;'> 1.46MB </span>","children":null,"spread":false},{"title":"NeurIPS-2020-model-based-adversarial-meta-reinforcement-learning-Paper.pdf <span style='color:#111;'> 1.06MB </span>","children":null,"spread":false},{"title":"NeurIPS-2020-model-based-policy-optimization-with-unsupervised-model-adaptation-Paper.pdf <span style='color:#111;'> 2.41MB </span>","children":null,"spread":false},{"title":"NeurIPS-2020-mopo-model-based-offline-policy-optimization-Paper.pdf <span style='color:#111;'> 632.81KB </span>","children":null,"spread":false},{"title":"NeurIPS-2020-adaptive-discretization-for-model-based-reinforcement-learning-Paper.pdf <span style='color:#111;'> 1.01MB </span>","children":null,"spread":false},{"title":"NeurIPS-2020-plangan-model-based-planning-with-sparse-rewards-and-multiple-goals-Paper.pdf <span style='color:#111;'> 930.17KB </span>","children":null,"spread":false},{"title":"NeurIPS-2020-how-to-learn-a-useful-critic-model-based-action-gradient-estimator-policy-optimization-Paper.pdf <span style='color:#111;'> 638.78KB </span>","children":null,"spread":false},{"title":"NeurIPS-2020-trust-the-model-when-it-is-confident-masked-model-based-actor-critic-Paper.pdf <span style='color:#111;'> 2.31MB </span>","children":null,"spread":false},{"title":"NeurIPS-2020-efficient-model-based-reinforcement-learning-through-optimistic-policy-search-and-planning-Paper.pdf <span style='color:#111;'> 4.71MB </span>","children":null,"spread":false},{"title":"NeurIPS-2020-bridging-imagination-and-reality-for-model-based-deep-reinforcement-learning-Paper.pdf <span style='color:#111;'> 841.38KB </span>","children":null,"spread":false},{"title":"NeurIPS-2020-breaking-the-sample-size-barrier-in-model-based-reinforcement-learning-with-a-generative-model-Paper.pdf <span style='color:#111;'> 429.71KB </span>","children":null,"spread":false},{"title":"NeurIPS-2020-model-based-reinforcement-learning-for-semi-markov-decision-processes-with-neural-odes-Paper.pdf <span style='color:#111;'> 1.22MB </span>","children":null,"spread":false}],"spread":true}]