一种结合Alphapose和LSTM的人体摔倒检测模型

上传者: tony2278 | 上传时间: 2021-04-27 23:01:57 | 文件大小: 1.08MB | 文件类型: PDF
Many Human-Body-Fall-Dow n Detection models are faced with problems like lower adaptability and higher w rong-detection rate in different detection scenes,and targeting on these shortcomings this research proposes a Human-Body-Fall-Dow n Detection Model based on the human skeleton keypoints and the LSTM neural network. This model detects the skeleton keypoints of the continuous multi-frame human body by Alphapose,and then divides the coordinate sequences of the skeleton keypoints into X and Y coordinate sequence,and then inputs them respectively into LSTM neural network to extract the time-order character; the last step is to input the LSTM hidden layer output vector into a full connection layer to obtain the results. This research uses public data set M uHAViMAS and Le2i to execute this experiment,and compares itself with many other detection models. The results show that this model has relatively high detection accuracy in multiple scenes,multiple view s,and multiple poses of falling.

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明