上传者: thinks_thinking
|
上传时间: 2021-10-10 20:43:28
|
文件大小: 2.64MB
|
文件类型: -
APPLIED
NUMERICAL
LINEAR
ALGEBRA
James W. Demmel
University of California
Berkeley, California
Society for Industrial and Applied Mathematics
Philadelphia
Contents
Preface ix
1 Introduction 1
1.1 Basic Notation 1
1.2 Standard Problems of Numerical Linear Algebra 1
1.3 General Techniques 2
1.3.1 Matrix Factorizations 3
1.3.2 Perturbation Theory and Condition Numbers 4
1.3.3 Effects of Roundoff Error on Algorithms 5
1.3.4 Analyzing the Speed of Algorithms 5
1.3.5 Engineering Numerical Software 6
1.4 Example: Polynomial Evaluation 7
1.5 Floating Point Arithmetic 9
1.5.1 Further Details 12
1.6 Polynomial Evaluation Revisited 15
1.7 Vector and Matrix Norms 19
1.8 References and Other Topics for Chapter 1 23
1.9 Questions for Chapter 1 24
2 Linear Equation Solving 31
2.1 Introduction 31
2.2 Perturbation Theory 32
2.2.1 Relative Perturbation Theory 35
2.3 Gaussian Elimination 38
2.4 Error Analysis 44
2.4.1 The Need for Pivoting 45
2.4.2 Formal Error Analysis of Gaussian Elimination 46
2.4.3 Estimating Condition Numbers 50
2.4.4 Practical Error Bounds 54
2.5 Improving the Accuracy of a Solution 60
2.5.1 Single Precision Iterative Refinement 62
2.5.2 Equilibration 62
2.6 Blocking Algorithms for Higher Performance 63
2.6.1 Basic Linear Algebra Subroutines (BLAS) 66
2.6.2 How to Optimize Matrix Multiplication 67
2.6.3 Reorganizing Gaussian Elimination to Use Level 3 BLAS 72
2.6.4 More About Parallelism and Other Performance Issues . 75
vi
Contents
2.7
2.8
2.9
Special Linear Systems
2.7.1 Real Symmetric Positive Definite Matrices
2.7.2 Symmetric Indefinite Matrices
2.7.3 Band Matrices
2.7.4 General Sparse Matrices
2.7.5 Dense Matrices Depending on Fewer Than O(n2) Pa-
rameters
References and Other Topics for Chapter 2
Questions for Chapter 2
76
76
79
79
83
90
93
93
3 Linear Least Squares Problems
101
3.1 Introduction
101
3.2 Matrix Factorizations That Solve the Linear Least Squares Prob-
lem
105
3.2.1 Normal Equations
106
3.2.2 QR Decomposition
107
3.2.3 Singular Value Decompos