模糊神经网络分类器

上传者: tangsoup1994 | 上传时间: 2022-01-06 19:07:27 | 文件大小: 15KB | 文件类型: -
It is known that there is no sufficient Matlab program about neuro-fuzzy classifiers. Generally, ANFIS is used as classifier. ANFIS is a function approximator program. But, the usage of ANFIS for classifications is unfavorable. For example, there are three classes, and labeled as 1, 2 and 3. The ANFIS outputs are not integer. For that reason the ANFIS outputs are rounded, and determined the class labels. But, sometimes, ANFIS can give 0 or 4 class labels. These situations are not accepted. As a result ANFIS is not suitable for classification problems. In this study, I prepared different adaptive neuro-fuzzy classifiers. In the all programs, which are given below, I used the k-means algorithm to initialize the fuzzy rules. For that reason, the user should give the number of cluster for each class. Also, Gaussian membership function is only used for fuzzy set descriptions, because of its simple derivative expressions The first of them is scg_nfclass.m. This classifier based on Jang’s neuro-fuzzy classifier [1]. The differences are about the rule weights and parameter optimization. The rule weights are adapted by the number of rule samples. The scaled conjugate gradient (SCG) algorithm is used to determine the optimum values of nonlinear parameters. The SCG is faster than the steepest descent and some second order derivative based methods. Also, it is suitable for large scale problems [2]. The second program is scg_nfclass_speedup.m. This classifier is similar the scg_nfclass. The difference is about parameter optimization. Although it is based on SCG algorithm, it is faster than the traditional SCG. Because, it used least squares estimation method for gradient estimation without using all training samples. The speeding up is seemed for medium and large scale problems [2]. The third program is scg_power_nfclass.m. Linguistic hedges are applied to the fuzzy sets of rules, and are adapted by SCG algorithm. By this way, some distinctive features are emphasized by power values, and some irrelevant features are damped with power values. The power effects in any feature are generally different for different classes. The using of linguistic hedges increase the recognition rates [3]. The last program is scg_power_nfclass_feature.m. In this program, the powers of fuzzy sets are used for feature selection [4]. If linguistic hedge values of classes in any feature are bigger than 0.5 and close to 1, this feature is relevant, otherwise it is irrelevant. The program creates a feature selection and a rejection criterion by using power values of features. References: [1] Sun CT, Jang JSR (1993). A neuro-fuzzy classifier and its applications. Proc. of IEEE Int. Conf. on Fuzzy Systems, San Francisco 1:94–98.Int. Conf. on Fuzzy Systems, San Francisco 1:94–98 [2] B. Cetişli, A. Barkana (2010). Speeding up the scaled conjugate gradient algorithm and its application in neuro-fuzzy classifier training. Soft Computing 14(4):365–378. [3] B. Cetişli (2010). Development of an adaptive neuro-fuzzy classifier using linguistic hedges: Part 1. Expert Systems with Applications, 37(8), pp. 6093-6101. [4] B. Cetişli (2010). The effect of linguistic hedges on feature selection: Part 2. Expert Systems with Applications, 37(8), pp 6102-6108. e-mail:bcetisli@mmf.sdu.edu.tr bcetisli@gmail.com

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明