模式识别必看论文集合

上传者: szu_hadooper | 上传时间: 2021-06-23 15:17:34 | 文件大小: 59.91MB | 文件类型: ZIP
模式识别新手到入门必看论文集合,一步一步的入手,很值得下载

文件下载

资源详情

[{"title":"( 47 个子文件 59.91MB ) 模式识别必看论文集合","children":[{"title":"数据","children":[{"title":"HRFface47P30Image.mat <span style='color:#111;'> 1.76MB </span>","children":null,"spread":false},{"title":"Pose09_32by32.mat <span style='color:#111;'> 1.49MB </span>","children":null,"spread":false},{"title":"ORL4646.mat <span style='color:#111;'> 6.08MB </span>","children":null,"spread":false},{"title":"PIEP27.mat <span style='color:#111;'> 2.46MB </span>","children":null,"spread":false},{"title":"LFW10.mat <span style='color:#111;'> 807.59KB </span>","children":null,"spread":false},{"title":"GTFOface15by15.mat <span style='color:#111;'> 157.77KB </span>","children":null,"spread":false},{"title":"L21OLPP_test_Feret.m <span style='color:#111;'> 12.88KB </span>","children":null,"spread":false},{"title":"COIL100.mat <span style='color:#111;'> 4.27MB </span>","children":null,"spread":false},{"title":"usps1000.mat <span style='color:#111;'> 132.25KB </span>","children":null,"spread":false},{"title":"FERET74040.mat <span style='color:#111;'> 2.03MB </span>","children":null,"spread":false}],"spread":true},{"title":"论文","children":[{"title":"LDA_dencai.m <span style='color:#111;'> 10.81KB </span>","children":null,"spread":false},{"title":"Sparse Principle Component Analysis 2004.pdf <span style='color:#111;'> 200.19KB </span>","children":null,"spread":false},{"title":"Efficient and Robust Feature Selection via Joint L21-Norms Minimization (L21R21_inv ).m <span style='color:#111;'> 1.27KB </span>","children":null,"spread":false},{"title":"Two-Dimensional Linear Discriminant Analysis.pdf <span style='color:#111;'> 90.19KB </span>","children":null,"spread":false},{"title":"eigenfaces.m <span style='color:#111;'> 653B </span>","children":null,"spread":false},{"title":"Sparse principal component analysis via regularized low rank matrix approximation 2008.pdf <span style='color:#111;'> 220.96KB </span>","children":null,"spread":false},{"title":"Orthogonal Laplacianfaces for Face Recognition.pdf <span style='color:#111;'> 1.88MB </span>","children":null,"spread":false},{"title":"Sparse Linear Discriminant Analysis with Applications.pdf <span style='color:#111;'> 546.58KB </span>","children":null,"spread":false},{"title":"Convergent 2-D Subspace Learning With Null Space Analysis 09 TCSVT.pdf <span style='color:#111;'> 307.22KB </span>","children":null,"spread":false},{"title":"sparse alignment for robust tensor learning TNNLS2014.pdf <span style='color:#111;'> 3.26MB </span>","children":null,"spread":false},{"title":"Null space discriminant locality preserving projections for face recognition NC08.pdf <span style='color:#111;'> 446.29KB </span>","children":null,"spread":false},{"title":"Multilinear sparse principal componnet analysis TNNLS2014.pdf <span style='color:#111;'> 1.25MB </span>","children":null,"spread":false},{"title":"A Framework of Joint Graph Embedding and Sparse Regression for Dimensionality Reduction TIP 2015.pdf <span style='color:#111;'> 3.88MB </span>","children":null,"spread":false},{"title":"Eigenfaces for recognition.pdf <span style='color:#111;'> 10.13MB </span>","children":null,"spread":false},{"title":"Generalized Power Method for Sparse Principal Component Analysis.pdf <span style='color:#111;'> 296.28KB </span>","children":null,"spread":false},{"title":"1D-LDA vs 2D-LDA When is vector-based linear discriminant analysis better than matrix-based.pdf <span style='color:#111;'> 518.44KB </span>","children":null,"spread":false},{"title":"face recognition using laplacianface.pdf <span style='color:#111;'> 1.09MB </span>","children":null,"spread":false},{"title":"Two-dimensional local graph embedding discriminant analysis (2DLGEDA).pdf <span style='color:#111;'> 495.20KB </span>","children":null,"spread":false},{"title":"Sparse Tensor Discriminant Analysis TIP2013.pdf <span style='color:#111;'> 744.77KB </span>","children":null,"spread":false},{"title":"prex_eigenfaces.m <span style='color:#111;'> 1.08KB </span>","children":null,"spread":false},{"title":"Graph Embedding and Extensions PAMI 2007.pdf <span style='color:#111;'> 1.86MB </span>","children":null,"spread":false},{"title":"sparse approximation to the eigensubspace for discrimination TNN2012.pdf <span style='color:#111;'> 748.27KB </span>","children":null,"spread":false},{"title":"Human gait recognition via sparse discriminant projection learning TCSVT 2014.pdf <span style='color:#111;'> 1.51MB </span>","children":null,"spread":false},{"title":"Face Recognition by Sparse Discriminant Analysis via Joint L21-norm Minimization.pdf <span style='color:#111;'> 630.14KB </span>","children":null,"spread":false},{"title":"Sparse two-dimensional local discriminant projections for feature extraction NC2011.pdf <span style='color:#111;'> 1.12MB </span>","children":null,"spread":false},{"title":"Null Space versus Orthogonal Linear Discriminant Analysis.pdf <span style='color:#111;'> 180.64KB </span>","children":null,"spread":false},{"title":"Semi-supervised constraints preserving hashing NC2015 OK.pdf <span style='color:#111;'> 1.63MB </span>","children":null,"spread":false},{"title":"Sparse Uncorrelated Linear Discriminant Analysis for Undersampled Problems TNNLS 2015 ok.pdf <span style='color:#111;'> 3.13MB </span>","children":null,"spread":false},{"title":"PCA_dencai.m <span style='color:#111;'> 3.33KB </span>","children":null,"spread":false},{"title":"Joint video frame set division and low rank decomposition for background subtraction TCSVT2014.pdf <span style='color:#111;'> 3.58MB </span>","children":null,"spread":false},{"title":"Eigenproblems in Pattern Recognition P.pdf <span style='color:#111;'> 297.41KB </span>","children":null,"spread":false},{"title":"Projective Nonnegative Graph Embedding TIP2010.pdf <span style='color:#111;'> 1.66MB </span>","children":null,"spread":false},{"title":"Breast Cancer Discriminant Feature Analysis for Diagnosis via Jointly Sparse Learning NC 2016.pdf <span style='color:#111;'> 1.59MB </span>","children":null,"spread":false},{"title":"Efficient and Robust Feature Selection via Joint L21-Norms Minimization_poster OK.pdf <span style='color:#111;'> 276.01KB </span>","children":null,"spread":false},{"title":"Stuctured sparse principal component analysis 09.pdf <span style='color:#111;'> 264.03KB </span>","children":null,"spread":false},{"title":"Joint Tensor Feature Analysis For Visual Objective Recognition TCYB (2).pdf <span style='color:#111;'> 1.66MB </span>","children":null,"spread":false},{"title":"Approximate orthogonal sparse embedding for dimensionality reduction TNNLS 2016.pdf <span style='color:#111;'> 2.20MB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明