[{"title":"( 16 个子文件 650KB ) 机器学习与算法源代码4: 逻辑回归模型.zip","children":[{"title":"机器学习与算法源代码4: 逻辑回归模型","children":[{"title":"源代码汇总_Jupyter Notebook格式(推荐)","children":[{"title":"4.2 案例实战 - 股票客户流失预警模型.py <span style='color:#111;'> 2.17KB </span>","children":null,"spread":false},{"title":"4.3 模型评估方法 - ROC曲线与KS曲线.ipynb <span style='color:#111;'> 56.38KB </span>","children":null,"spread":false},{"title":"股票客户流失.xlsx <span style='color:#111;'> 273.99KB </span>","children":null,"spread":false},{"title":"4.2 案例实战 - 股票客户流失预警模型.ipynb <span style='color:#111;'> 18.53KB </span>","children":null,"spread":false},{"title":"4.3.1 模型评估方法 - ROC曲线与KS曲线.py <span style='color:#111;'> 1.39KB </span>","children":null,"spread":false},{"title":"4.1 逻辑回归模型算法原理.py <span style='color:#111;'> 1.45KB </span>","children":null,"spread":false},{"title":"4.1 逻辑回归模型算法原理.ipynb <span style='color:#111;'> 22.98KB </span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"4.2 案例实战 - 股票客户流失预警模型-checkpoint.ipynb <span style='color:#111;'> 18.53KB </span>","children":null,"spread":false},{"title":"4.1 逻辑回归模型算法原理-checkpoint.ipynb <span style='color:#111;'> 22.98KB </span>","children":null,"spread":false},{"title":"4.3 模型评估方法 - ROC曲线与KS曲线-checkpoint.ipynb <span style='color:#111;'> 56.38KB </span>","children":null,"spread":false}],"spread":true},{"title":"4.3.2 模型评估方法 - ROC曲线与KS曲线.py <span style='color:#111;'> 2.40KB </span>","children":null,"spread":false}],"spread":true},{"title":"源代码汇总_PyCharm格式","children":[{"title":"4.2 案例实战 - 股票客户流失预警模型.py <span style='color:#111;'> 2.17KB </span>","children":null,"spread":false},{"title":"股票客户流失.xlsx <span style='color:#111;'> 273.99KB </span>","children":null,"spread":false},{"title":"4.3.1 模型评估方法 - ROC曲线与KS曲线.py <span style='color:#111;'> 1.39KB </span>","children":null,"spread":false},{"title":"4.1 逻辑回归模型算法原理.py <span style='color:#111;'> 1.45KB </span>","children":null,"spread":false},{"title":"4.3.2 模型评估方法 - ROC曲线与KS曲线.py <span style='color:#111;'> 2.40KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]