《多任务学习》最新综述论文

上传者: syp_net | 上传时间: 2021-04-06 19:16:00 | 文件大小: 1.1MB | 文件类型: PDF
多任务学习(Multi-Task Learning, MTL)是机器学习中的一种学习范式,其目的是利用多个相关任务中包含的有用信息来帮助提高所有任务的泛化性能。本文从算法建模、应用和理论分析三个方面对MTL进行了综述。在算法建模方面,给出了MTL的定义,并将不同的MTL算法分为特征学习、低秩、任务聚类、任务关系学习和分解五类,并讨论了每种方法的特点。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明