基于多种机器学习算法的分类预测研究

上传者: 60090693 | 上传时间: 2022-11-16 18:32:30 | 文件大小: 1.81MB | 文件类型: DOC
本资源为原创论文的word版。 可用于机器学习课程的结课论文。 本文在对Lending Club数据集进行初步数据分析的基础上,通过选取4组不同的特征,采用同一种算法(逻辑回归,LR)进行分类预测,最终确定3个相对较优特征为:loan_amnt,annual_inc,term。随后本文针对“多源数据集”,采用神经网络、贝叶斯分类器和决策树三种算法对数据进行分类预测,最终综合三种算法的模型结果参数,确定决策树为三者最优。最后,本文仍选取Lending Club数据集作为研究对象,经预处理后,选取数据的55个特征,并将二分类问题变为三分类问题。之后,采用单一树类模型——决策树,以及集成树类模型——随机森林和极端随机树对数据进行分类预测,对比模型结果参数,得出结论:集成算法相比较于单一算法有更好的准确度和泛化能力,但是相应模型也会消耗更多计算机资源。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明