基于Simulink的时间序列预测(包括ARIMAX、LSTM、GRU和SSM模型),使用MATLABR2020a

上传者: 59771180 | 上传时间: 2022-06-05 12:05:36 | 文件大小: 5.08MB | 文件类型: ZIP
# 在 Simulink上使用任意时间序列模型进行递归预测 包括ARIMAX、LSTM、GRU和SSM模型。 让我们在 Simulink 上运行时间序列预测!!​ ## 介绍 本页具体介绍如何针对以下需求实现时间序列模型。 - 在开发中的 Simulink 模型上构建深度学习功能​ - 在 Simulink 上尝试各种时间序列模型​ - 在 Simulink 模型上实现 MATLAB 产品系列支持的功能​ 每个文件夹都有 MATLAB 代码和 Simulink 模型,它们的名称分别对应于时间序列模型或神经网络层。 ## 关键要点 它们提供了递归预测时间序列的功能,每个示例都描述了如何在 Simulink 上实现它们的功能并通过 MATLAB Function 模块调用它们。该技术不仅适用于上述产品,还可以采用其他产品提供的附加功能进行时间​​序列分析,特别是回归, ## 要求 * MATLAB * 模拟链接 * 深度学习工具箱 * 计量经济学工

文件下载

资源详情

[{"title":"( 49 个子文件 5.08MB ) 基于Simulink的时间序列预测(包括ARIMAX、LSTM、GRU和SSM模型),使用MATLABR2020a","children":[{"title":"TimeSeriesForecasting_on_Simulink.pdf <span style='color:#111;'> 1.33MB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.62KB </span>","children":null,"spread":false},{"title":"GRU","children":[{"title":"README.md <span style='color:#111;'> 6.06KB </span>","children":null,"spread":false},{"title":"recursive_gru_update.slx <span style='color:#111;'> 28.05KB </span>","children":null,"spread":false},{"title":"README_images","children":[{"title":"image_0.png <span style='color:#111;'> 62.18KB </span>","children":null,"spread":false},{"title":"image_5.png <span style='color:#111;'> 31.87KB </span>","children":null,"spread":false},{"title":"image_2.png <span style='color:#111;'> 110.84KB </span>","children":null,"spread":false},{"title":"figure_1.png <span style='color:#111;'> 309.03KB </span>","children":null,"spread":false},{"title":"image_4.png <span style='color:#111;'> 6.80KB </span>","children":null,"spread":false},{"title":"figure_3.png <span style='color:#111;'> 62.42KB </span>","children":null,"spread":false},{"title":"figure_0.png <span style='color:#111;'> 47.45KB </span>","children":null,"spread":false},{"title":"figure_2.png <span style='color:#111;'> 62.42KB </span>","children":null,"spread":false},{"title":"image_3.png <span style='color:#111;'> 71.96KB </span>","children":null,"spread":false},{"title":"image_1.png <span style='color:#111;'> 60.66KB </span>","children":null,"spread":false}],"spread":true},{"title":"TrainedGRUNetwork.mat <span style='color:#111;'> 444.11KB </span>","children":null,"spread":false},{"title":"time_series_forecasting.mlx <span style='color:#111;'> 734.19KB </span>","children":null,"spread":false},{"title":"my_update_predict_fcn.m <span style='color:#111;'> 184B </span>","children":null,"spread":false}],"spread":true},{"title":"SSM","children":[{"title":"README.md <span style='color:#111;'> 6.32KB </span>","children":null,"spread":false},{"title":"recursive_ssm_update.slx <span style='color:#111;'> 27.95KB </span>","children":null,"spread":false},{"title":"README_images","children":[{"title":"image_0.png <span style='color:#111;'> 27.75KB </span>","children":null,"spread":false},{"title":"figure_1.png <span style='color:#111;'> 60.23KB </span>","children":null,"spread":false},{"title":"figure_0.png <span style='color:#111;'> 60.23KB </span>","children":null,"spread":false}],"spread":true},{"title":"time_series_forecasting.mlx <span style='color:#111;'> 118.50KB </span>","children":null,"spread":false},{"title":"my_predict_fcn.m <span style='color:#111;'> 277B </span>","children":null,"spread":false},{"title":"rwAR2ParamMap.m <span style='color:#111;'> 661B </span>","children":null,"spread":false}],"spread":true},{"title":"LSTM","children":[{"title":"README.md <span style='color:#111;'> 7.10KB </span>","children":null,"spread":false},{"title":"recursive_lstm_update.slx <span style='color:#111;'> 27.81KB </span>","children":null,"spread":false},{"title":"README_images","children":[{"title":"image_0.png <span style='color:#111;'> 48.22KB </span>","children":null,"spread":false},{"title":"image_5.png <span style='color:#111;'> 32.72KB </span>","children":null,"spread":false},{"title":"image_2.png <span style='color:#111;'> 45.70KB </span>","children":null,"spread":false},{"title":"figure_1.png <span style='color:#111;'> 212.57KB </span>","children":null,"spread":false},{"title":"image_4.png <span style='color:#111;'> 6.80KB </span>","children":null,"spread":false},{"title":"figure_3.png <span style='color:#111;'> 62.98KB </span>","children":null,"spread":false},{"title":"figure_0.png <span style='color:#111;'> 47.45KB </span>","children":null,"spread":false},{"title":"figure_2.png <span style='color:#111;'> 62.98KB </span>","children":null,"spread":false},{"title":"image_3.png <span style='color:#111;'> 71.62KB </span>","children":null,"spread":false},{"title":"image_1.png <span style='color:#111;'> 58.93KB </span>","children":null,"spread":false}],"spread":true},{"title":"TrainedLSTMNetwork.mat <span style='color:#111;'> 590.47KB </span>","children":null,"spread":false},{"title":"time_series_forecasting.mlx <span style='color:#111;'> 592.02KB </span>","children":null,"spread":false},{"title":"my_update_predict_fcn.m <span style='color:#111;'> 184B </span>","children":null,"spread":false}],"spread":true},{"title":"ARIMAX","children":[{"title":"README.md <span style='color:#111;'> 5.14KB </span>","children":null,"spread":false},{"title":"recursive_arimax_model_update.slx <span style='color:#111;'> 27.34KB </span>","children":null,"spread":false},{"title":"README_images","children":[{"title":"image_0.png <span style='color:#111;'> 26.09KB </span>","children":null,"spread":false},{"title":"ARIMAX212.png <span style='color:#111;'> 11.80KB </span>","children":null,"spread":false},{"title":"figure_1.png <span style='color:#111;'> 52.04KB </span>","children":null,"spread":false},{"title":"figure_0.png <span style='color:#111;'> 52.04KB </span>","children":null,"spread":false}],"spread":true},{"title":"my_arimax_predict_fcn.m <span style='color:#111;'> 353B </span>","children":null,"spread":false},{"title":"time_series_forecasting.mlx <span style='color:#111;'> 104.88KB </span>","children":null,"spread":false}],"spread":true},{"title":"README_EN.md <span style='color:#111;'> 1.27KB </span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明