基于MATLAB的图像去躁技术研究 里面有个说明文档

上传者: 45047246 | 上传时间: 2022-04-16 14:07:32 | 文件大小: 931KB | 文件类型: ZIP
基于MATLAB的图像去躁技术研究 数字图像处理(Digital Image Processing,DIP)是指用计算机辅助技术对图像信号进行处理的过程。数字图像处理最早出现于 20世纪50年代,随着过去几十年来计算机、网络技术和通信的快速发展,为信号处理这个学科领域的发展奠定了基础,使得DIP技术成为信息技术中最重要的学科分支之一。在现实生活中,DIP应用十分广泛,医疗、艺术、军事、航天等图像处理影响着人类生活和工作的各个方面。 然而,在图像的采集、获取、编码和传输的过程中,都存在不同程度被各种噪声所“污染”的现象。如果图像被污染得比较严重,噪声会变成可见的颗粒形状,导致图像质量的严重下降。根据研究表明,当一张图像信噪比(SNR)低于14.2dB 时,图像分割的误检率就高于0.5%,而参数估计的误差高于0.6%。通过一些卓有成效的噪声处理技术后,尽可能地去除图像噪声,我们在从图像中获取信息时就更容易,有利于进一步的对图像进行如特征提取、信号检测和图像压缩等处理。小波变换处理应用于图像去噪外,在其他图像处理领域都有着十分广泛的应用。本论文以小波变换作为分析工具处理图像噪声,研究数字图

文件下载

资源详情

[{"title":"( 32 个子文件 931KB ) 基于MATLAB的图像去躁技术研究 里面有个说明文档","children":[{"title":"(完整版)小波变换图像去噪MATLAB实现.doc <span style='color:#111;'> 297.00KB </span>","children":null,"spread":false},{"title":"去噪","children":[{"title":"均值滤波","children":[{"title":"AverFilter.m <span style='color:#111;'> 200B </span>","children":null,"spread":false},{"title":"1.jpg <span style='color:#111;'> 49.25KB </span>","children":null,"spread":false},{"title":"均值滤波所得图像.jpg <span style='color:#111;'> 25.63KB </span>","children":null,"spread":false}],"spread":true},{"title":"高斯滤波","children":[{"title":"1.jpg <span style='color:#111;'> 49.25KB </span>","children":null,"spread":false},{"title":"高斯滤波所得图像.jpg <span style='color:#111;'> 23.21KB </span>","children":null,"spread":false},{"title":"GaussFilter.m <span style='color:#111;'> 216B </span>","children":null,"spread":false}],"spread":true},{"title":"巴特沃斯高通滤波","children":[{"title":"batewosigaotong.m <span style='color:#111;'> 883B </span>","children":null,"spread":false},{"title":"1.jpg <span style='color:#111;'> 49.25KB </span>","children":null,"spread":false},{"title":"Butterworht高通滤波结果.jpg <span style='color:#111;'> 39.50KB </span>","children":null,"spread":false},{"title":"Butterworth高通滤波增强所得图像.jpg <span style='color:#111;'> 49.20KB </span>","children":null,"spread":false}],"spread":true},{"title":"添加高斯噪声.jpg <span style='color:#111;'> 26.28KB </span>","children":null,"spread":false},{"title":"MedFilter.m <span style='color:#111;'> 161B </span>","children":null,"spread":false},{"title":"小波三级软阈值去噪","children":[{"title":"1.jpg <span style='color:#111;'> 19.66KB </span>","children":null,"spread":false},{"title":"xiaoboquzao.m <span style='color:#111;'> 1.37KB </span>","children":null,"spread":false}],"spread":true},{"title":"维纳滤波结果.jpg <span style='color:#111;'> 41.55KB </span>","children":null,"spread":false},{"title":"weinalvbo.m <span style='color:#111;'> 559B </span>","children":null,"spread":false},{"title":"双边滤波","children":[{"title":"双边滤波所得图像.jpg <span style='color:#111;'> 48.03KB </span>","children":null,"spread":false},{"title":"1.jpg <span style='color:#111;'> 49.25KB </span>","children":null,"spread":false},{"title":"shuangbianlvbo.m <span style='color:#111;'> 521B </span>","children":null,"spread":false},{"title":"bilateralFilter.m <span style='color:#111;'> 3.77KB </span>","children":null,"spread":false}],"spread":true},{"title":"自适应中值滤波","children":[{"title":"1.jpg <span style='color:#111;'> 19.66KB </span>","children":null,"spread":false},{"title":"zishiyingzhongzhilvbo.m <span style='color:#111;'> 2.75KB </span>","children":null,"spread":false}],"spread":true},{"title":"各项异性扩散滤波","children":[{"title":"1.jpg <span style='color:#111;'> 52.07KB </span>","children":null,"spread":false},{"title":"gexiagyixing.m <span style='color:#111;'> 2.98KB </span>","children":null,"spread":false},{"title":"各项异性扩散滤波.jpg <span style='color:#111;'> 41.52KB </span>","children":null,"spread":false}],"spread":true},{"title":"untitled.m <span style='color:#111;'> 341B </span>","children":null,"spread":false},{"title":"中值滤波","children":[{"title":"1.jpg <span style='color:#111;'> 19.66KB </span>","children":null,"spread":false},{"title":"MedFilter.m <span style='color:#111;'> 138B </span>","children":null,"spread":false}],"spread":false},{"title":"添加椒盐噪声.jpg <span style='color:#111;'> 19.42KB </span>","children":null,"spread":false},{"title":"维纳滤波","children":[{"title":"1.jpg <span style='color:#111;'> 49.25KB </span>","children":null,"spread":false},{"title":"weinalvbo.m <span style='color:#111;'> 687B </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明