电子科技大学中山学院信号与系统.zip

上传者: 42343682 | 上传时间: 2021-03-30 19:00:19 | 文件大小: 30.17MB | 文件类型: ZIP
电子科技大学中山学院信号与系统复习资料,期末资料试卷,PPT等

文件下载

资源详情

[{"title":"( 80 个子文件 30.17MB ) 电子科技大学中山学院信号与系统.zip","children":[{"title":"信号与系统","children":[{"title":"信号与系统总复习-20190522.ppt <span style='color:#111;'> 1.85MB </span>","children":null,"spread":false},{"title":"信号与系统.zip <span style='color:#111;'> 1.46MB </span>","children":null,"spread":false},{"title":"10级《信号与系统》A卷讲评.ppt <span style='color:#111;'> 168.50KB </span>","children":null,"spread":false},{"title":"随机信号课件PPT.ppt <span style='color:#111;'> 3.61MB </span>","children":null,"spread":false},{"title":"信号PPT","children":[{"title":"4","children":[{"title":"4.8","children":[{"title":"频率响应例4.8-2.ppt <span style='color:#111;'> 206.50KB </span>","children":null,"spread":false},{"title":"§4.8 LTI系统的频域分析.ppt <span style='color:#111;'> 407.00KB </span>","children":null,"spread":false}],"spread":true},{"title":"4.3","children":[{"title":"频谱图示.ppt <span style='color:#111;'> 303.00KB </span>","children":null,"spread":false},{"title":"§4.3 周期信号的频谱.ppt <span style='color:#111;'> 669.00KB </span>","children":null,"spread":false},{"title":"傅l里叶级数.avi <span style='color:#111;'> 38.29MB </span>","children":null,"spread":false},{"title":"周期信号功率式证明.ppt <span style='color:#111;'> 225.00KB </span>","children":null,"spread":false}],"spread":true},{"title":"4.2","children":[{"title":"狄里赫利(Dirichlet)条件.ppt <span style='color:#111;'> 191.00KB </span>","children":null,"spread":false},{"title":"§4.2 傅里叶级数.ppt <span style='color:#111;'> 449.50KB </span>","children":null,"spread":false},{"title":"指数形式付氏级数推导.ppt <span style='color:#111;'> 229.00KB </span>","children":null,"spread":false}],"spread":true},{"title":"4.4","children":[{"title":"§4.4 非周期信号的频谱.ppt <span style='color:#111;'> 1.14MB </span>","children":null,"spread":false}],"spread":true},{"title":"4.1","children":[{"title":"§4.0 引言.ppt <span style='color:#111;'> 199.00KB </span>","children":null,"spread":false},{"title":"§4.1 信号分解为正交函数.ppt <span style='color:#111;'> 240.00KB </span>","children":null,"spread":false}],"spread":true},{"title":"4.5","children":[{"title":"线性性质例.ppt <span style='color:#111;'> 222.50KB </span>","children":null,"spread":false},{"title":"时域微分积分特性例.ppt <span style='color:#111;'> 235.50KB </span>","children":null,"spread":false},{"title":"频域微分积分特性例1.ppt <span style='color:#111;'> 203.00KB </span>","children":null,"spread":false},{"title":"时移特性举例1.ppt <span style='color:#111;'> 235.00KB </span>","children":null,"spread":false},{"title":"频域微分积分特性例2.ppt <span style='color:#111;'> 213.00KB </span>","children":null,"spread":false},{"title":"时移举例2.ppt <span style='color:#111;'> 430.00KB </span>","children":null,"spread":false},{"title":"§4.5 傅里叶变换的性质.ppt <span style='color:#111;'> 487.00KB </span>","children":null,"spread":false}],"spread":true},{"title":"4.9","children":[{"title":"§4.9 取样定理.ppt <span style='color:#111;'> 490.50KB </span>","children":null,"spread":false},{"title":"由取样信号恢复原信号.ppt <span style='color:#111;'> 382.00KB </span>","children":null,"spread":false}],"spread":true},{"title":"4.7","children":[{"title":"周期信号傅氏变换例4.7-1.ppt <span style='color:#111;'> 224.50KB </span>","children":null,"spread":false},{"title":"§4.7 周期信号的傅里叶变换.ppt <span style='color:#111;'> 404.50KB </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"5","children":[{"title":"5.4","children":[{"title":"电路例题.ppt <span style='color:#111;'> 270.00KB </span>","children":null,"spread":false},{"title":"§5.4 复频域分析.ppt <span style='color:#111;'> 685.50KB </span>","children":null,"spread":false}],"spread":true},{"title":"5.1","children":[{"title":"§5.1 拉普拉斯变换.ppt <span style='color:#111;'> 473.50KB </span>","children":null,"spread":false}],"spread":true},{"title":"5.2","children":[{"title":"§5.2 拉普拉斯变换性质.ppt <span style='color:#111;'> 497.00KB </span>","children":null,"spread":false}],"spread":true},{"title":"5.3","children":[{"title":"共轭极点例1.ppt <span style='color:#111;'> 214.50KB </span>","children":null,"spread":false},{"title":"§5.3 拉普拉斯逆变换.ppt <span style='color:#111;'> 452.50KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"3","children":[{"title":"3.2","children":[{"title":"§3.2 单位序列响应和阶跃响应.ppt <span style='color:#111;'> 261.00KB </span>","children":null,"spread":false},{"title":"单位序列响应例.ppt <span style='color:#111;'> 199.00KB </span>","children":null,"spread":false}],"spread":true},{"title":"3.1","children":[{"title":"差分方程全解举例3.1-2.ppt <span style='color:#111;'> 275.50KB </span>","children":null,"spread":false},{"title":"零输入零状态举例.ppt <span style='color:#111;'> 245.50KB </span>","children":null,"spread":false},{"title":"差分方程迭代解举例3.1-1.ppt <span style='color:#111;'> 192.50KB </span>","children":null,"spread":false},{"title":"§3.1 LTI离散系统的响应.ppt <span style='color:#111;'> 337.00KB </span>","children":null,"spread":false}],"spread":true},{"title":"3.3","children":[{"title":"性质求卷积和例.ppt <span style='color:#111;'> 211.00KB </span>","children":null,"spread":false},{"title":"用定义求卷积和例.ppt <span style='color:#111;'> 199.00KB </span>","children":null,"spread":false},{"title":"不进位乘法求卷积和例.ppt <span style='color:#111;'> 201.50KB </span>","children":null,"spread":false},{"title":"§3.3 卷积和.ppt <span style='color:#111;'> 311.50KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"2","children":[{"title":"2.1","children":[{"title":"特解举例.ppt <span style='color:#111;'> 223.50KB </span>","children":null,"spread":false},{"title":"全解举例.ppt <span style='color:#111;'> 200.50KB </span>","children":null,"spread":false},{"title":"零输入响应和零状态响应举例.ppt <span style='color:#111;'> 207.00KB </span>","children":null,"spread":false},{"title":"§2.1 LTI连续系统的响应.ppt <span style='color:#111;'> 273.00KB </span>","children":null,"spread":false},{"title":"齐次解举例.ppt <span style='color:#111;'> 204.00KB </span>","children":null,"spread":false}],"spread":true},{"title":"2.3","children":[{"title":"§2.3 卷积积分.ppt <span style='color:#111;'> 412.00KB </span>","children":null,"spread":false},{"title":"用定义计算卷积举例.ppt <span style='color:#111;'> 206.50KB </span>","children":null,"spread":false}],"spread":true},{"title":"2.4","children":[{"title":"卷积性质例2.ppt <span style='color:#111;'> 204.50KB </span>","children":null,"spread":false},{"title":"系统并联.ppt <span style='color:#111;'> 272.50KB </span>","children":null,"spread":false},{"title":"证明交换律.ppt <span style='color:#111;'> 208.00KB </span>","children":null,"spread":false},{"title":"系统级联.ppt <span style='color:#111;'> 204.50KB </span>","children":null,"spread":false},{"title":"卷积性质例1.ppt <span style='color:#111;'> 205.50KB </span>","children":null,"spread":false},{"title":"§2.4 卷积积分的性质.ppt <span style='color:#111;'> 492.50KB </span>","children":null,"spread":false}],"spread":true},{"title":"2.2","children":[{"title":"§2.2 冲激响应和阶跃响应.ppt <span style='color:#111;'> 390.50KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"1","children":[{"title":"1.3","children":[{"title":"平移与反转相结合举例.ppt <span style='color:#111;'> 287.00KB </span>","children":null,"spread":false},{"title":"§1.3 信号的基本运算.ppt <span style='color:#111;'> 748.50KB </span>","children":null,"spread":false},{"title":"平移与展缩相结合举例.ppt <span style='color:#111;'> 286.50KB </span>","children":null,"spread":false},{"title":"平移、展缩、反折相结合举例.ppt <span style='color:#111;'> 267.50KB </span>","children":null,"spread":false}],"spread":true},{"title":"1.5","children":[{"title":"例2由框图写差分方程.ppt <span style='color:#111;'> 223.50KB </span>","children":null,"spread":false},{"title":"例1由框图写微分方程.ppt <span style='color:#111;'> 239.50KB </span>","children":null,"spread":false},{"title":"§1.5 系统的描述和分析方法.ppt <span style='color:#111;'> 532.00KB </span>","children":null,"spread":false}],"spread":true},{"title":"1.4","children":[{"title":"冲激偶积分证明.ppt <span style='color:#111;'> 200.50KB </span>","children":null,"spread":false},{"title":"§1.4 阶跃函数和冲激函数.ppt <span style='color:#111;'> 1002.00KB </span>","children":null,"spread":false},{"title":"冲激函数取样性质证明.ppt <span style='color:#111;'> 201.00KB </span>","children":null,"spread":false},{"title":"冲激信号尺度变换的证明.ppt <span style='color:#111;'> 248.00KB </span>","children":null,"spread":false},{"title":"冲激取样性质举例.ppt <span style='color:#111;'> 209.00KB </span>","children":null,"spread":false},{"title":"冲激偶取样性证明.ppt <span style='color:#111;'> 193.50KB </span>","children":null,"spread":false}],"spread":true},{"title":"1.6","children":[{"title":"判断时不变系统举例.ppt <span style='color:#111;'> 278.50KB </span>","children":null,"spread":false},{"title":"因果系统判断举例.ppt <span style='color:#111;'> 200.00KB </span>","children":null,"spread":false},{"title":"判断线性系统举例.ppt <span style='color:#111;'> 195.50KB </span>","children":null,"spread":false},{"title":"§1.6 系统的特性和分类.ppt <span style='color:#111;'> 612.50KB </span>","children":null,"spread":false}],"spread":false},{"title":"1.2","children":[{"title":"复指数信号.ppt <span style='color:#111;'> 203.50KB </span>","children":null,"spread":false},{"title":"§1.2 信号的描述和分类.ppt <span style='color:#111;'> 600.50KB </span>","children":null,"spread":false},{"title":"连续周期正弦信号.ppt <span style='color:#111;'> 386.50KB </span>","children":null,"spread":false},{"title":"离散周期信号举例.ppt <span style='color:#111;'> 174.50KB </span>","children":null,"spread":false},{"title":"指数信号.ppt <span style='color:#111;'> 241.00KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}],"spread":true},{"title":"中山学院——13级《信号与系统》A卷.doc <span style='color:#111;'> 158.73KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明