基于知识图谱的问答系统

上传者: 40658408 | 上传时间: 2021-12-11 17:34:25 | 文件大小: 720KB | 文件类型: -
Question answering (QA) has become a popular way for humans to access billion-scale knowledge bases. Unlike web search, QA over a knowledge base gives out accurate and concise results, provided that natural language questions can be understood and mapped precisely to structured queries over the knowledge base. The challenge, however, is that a human can ask one question in many different ways. Previous approaches have natural limits due to their representations: rule based approaches only understand a small set of “canned” questions, while keyword based or synonym based approaches cannot fully understand the questions. In this paper, we design a new kind of question representation: templates, over a billion scale knowledge base and a million scale QA corpora. For example, for questions about a city’s population, we learn templates such as What’s the population of $city?, How many people are there in $city?. We learned 27 million templates for 2782 intents. Based on these templates, our QA system KBQA effectively supports binary factoid questions, as well as complex questions which are composed of a series of binary factoid questions. Furthermore, we expand predicates in RDF knowledge base, which boosts the coverage of knowledge base by 57 times. Our QA system beats all other state-of-art works on both effectiveness and efficiency over QALD benchmarks.

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明