基于深度学习的中文文本情感分类

上传者: 39564555 | 上传时间: 2021-05-12 15:22:41 | 文件大小: 115.87MB | 文件类型: ZIP
基于深度学习的情感分类和智能客服研究与实现。主要是酒店和书店的评论情感分析,可以判定积极和消极,对于消极评论,还可以判断其具体类别,比如物流不好或者服务差等等。内含项目源代码和开发文档。

文件下载

资源详情

[{"title":"( 33 个子文件 115.87MB ) 基于深度学习的中文文本情感分类","children":[{"title":"sentimentAnalysis","children":[{"title":"sentimentAnalysis","children":[{"title":"templates","children":[{"title":"welcome.html <span style='color:#111;'> 562B </span>","children":null,"spread":false},{"title":"showPage.html <span style='color:#111;'> 1.96KB </span>","children":null,"spread":false}],"spread":true},{"title":"src","children":[{"title":"useModel.py <span style='color:#111;'> 8.56KB </span>","children":null,"spread":false},{"title":"sentimentAnalysisClass2.py <span style='color:#111;'> 9.29KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"useModel.cpython-37.pyc <span style='color:#111;'> 6.32KB </span>","children":null,"spread":false}],"spread":true},{"title":"sentimentAnalysisClass9.py <span style='color:#111;'> 9.53KB </span>","children":null,"spread":false}],"spread":true},{"title":"static","children":[{"title":"images","children":[{"title":"bg1.jpg <span style='color:#111;'> 77.46KB </span>","children":null,"spread":false}],"spread":true},{"title":"data","children":[{"title":"pos.xls <span style='color:#111;'> 1.28MB </span>","children":null,"spread":false},{"title":"neg.xlsx <span style='color:#111;'> 697.10KB </span>","children":null,"spread":false},{"title":"neg9.xlsx <span style='color:#111;'> 743.20KB </span>","children":null,"spread":false}],"spread":true},{"title":"model","children":[{"title":"my_model2.h5 <span style='color:#111;'> 59.50MB </span>","children":null,"spread":false},{"title":"my_model9.h5 <span style='color:#111;'> 57.74MB </span>","children":null,"spread":false}],"spread":true},{"title":"embeddings","children":[{"title":"sgns.zhihu.bigram.txt <span style='color:#111;'> 200B </span>","children":null,"spread":false}],"spread":true},{"title":"js","children":[{"title":"main.js <span style='color:#111;'> 95B </span>","children":null,"spread":false},{"title":"jquery-1.11.0.min.js <span style='color:#111;'> 94.12KB </span>","children":null,"spread":false},{"title":"an-skill-bar.js <span style='color:#111;'> 671B </span>","children":null,"spread":false}],"spread":true},{"title":"css","children":[{"title":"demo.css <span style='color:#111;'> 582B </span>","children":null,"spread":false},{"title":"main.css <span style='color:#111;'> 434B </span>","children":null,"spread":false},{"title":"normalize.css <span style='color:#111;'> 1.78KB </span>","children":null,"spread":false},{"title":"an-skill-bar.css <span style='color:#111;'> 3.00KB </span>","children":null,"spread":false}],"spread":true},{"title":"logs","children":[{"title":"class9","children":null,"spread":false},{"title":"class2","children":[{"title":"events.out.tfevents.1562922411.DESKTOP-C0KBGLK <span style='color:#111;'> 1.93MB </span>","children":null,"spread":false},{"title":"train","children":[{"title":"events.out.tfevents.1562921870.DESKTOP-C0KBGLK.5804.3946.v2 <span style='color:#111;'> 4.27KB </span>","children":null,"spread":false}],"spread":false},{"title":"validation","children":[{"title":"events.out.tfevents.1562921946.DESKTOP-C0KBGLK.5804.4027.v2 <span style='color:#111;'> 701B </span>","children":null,"spread":false}],"spread":false}],"spread":true}],"spread":true}],"spread":true},{"title":".idea","children":[{"title":"misc.xml <span style='color:#111;'> 307B </span>","children":null,"spread":false},{"title":"workspace.xml <span style='color:#111;'> 25.53KB </span>","children":null,"spread":false},{"title":"other.xml <span style='color:#111;'> 239B </span>","children":null,"spread":false},{"title":"sentimentAnalysis.iml <span style='color:#111;'> 1004B </span>","children":null,"spread":false},{"title":"modules.xml <span style='color:#111;'> 293B </span>","children":null,"spread":false}],"spread":true},{"title":"__pycache__","children":[{"title":"app.cpython-37.pyc <span style='color:#111;'> 1.14KB </span>","children":null,"spread":false},{"title":"useModel.cpython-37.pyc <span style='color:#111;'> 6.32KB </span>","children":null,"spread":false}],"spread":true},{"title":"app.py <span style='color:#111;'> 1.39KB </span>","children":null,"spread":false}],"spread":true},{"title":"实验报告.docx <span style='color:#111;'> 3.54MB </span>","children":null,"spread":false},{"title":"项目使用说明文档.docx <span style='color:#111;'> 1.37MB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明