convnext的代码-pytorch框架-cv中可以使用

上传者: 39096123 | 上传时间: 2022-06-02 20:08:32 | 文件大小: 83KB | 文件类型: ZIP
convnext的代码-pytorch框架-cv中可以使用

文件下载

资源详情

[{"title":"( 51 个子文件 83KB ) convnext的代码-pytorch框架-cv中可以使用","children":[{"title":"ConvNeXt-main","children":[{"title":"INSTALL.md <span style='color:#111;'> 1.27KB </span>","children":null,"spread":false},{"title":"object_detection","children":[{"title":"mmdet","children":[{"title":"models","children":[{"title":"backbones","children":[{"title":"__init__.py <span style='color:#111;'> 712B </span>","children":null,"spread":false},{"title":"convnext.py <span style='color:#111;'> 7.26KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true},{"title":"README.md <span style='color:#111;'> 3.68KB </span>","children":null,"spread":false},{"title":"configs","children":[{"title":"convnext","children":[{"title":"cascade_mask_rcnn_convnext_tiny_patch4_window7_mstrain_480-800_giou_4conv1f_adamw_3x_coco_in1k.py <span style='color:#111;'> 5.54KB </span>","children":null,"spread":false},{"title":"cascade_mask_rcnn_convnext_large_patch4_window7_mstrain_480-800_giou_4conv1f_adamw_3x_coco_in22k.py <span style='color:#111;'> 5.55KB </span>","children":null,"spread":false},{"title":"cascade_mask_rcnn_convnext_base_patch4_window7_mstrain_480-800_giou_4conv1f_adamw_3x_coco_in1k.py <span style='color:#111;'> 5.55KB </span>","children":null,"spread":false},{"title":"cascade_mask_rcnn_convnext_small_patch4_window7_mstrain_480-800_giou_4conv1f_adamw_3x_coco_in1k.py <span style='color:#111;'> 5.54KB </span>","children":null,"spread":false},{"title":"cascade_mask_rcnn_convnext_base_patch4_window7_mstrain_480-800_giou_4conv1f_adamw_3x_coco_in22k.py <span style='color:#111;'> 5.55KB </span>","children":null,"spread":false},{"title":"cascade_mask_rcnn_convnext_xlarge_patch4_window7_mstrain_480-800_giou_4conv1f_adamw_3x_coco_in22k.py <span style='color:#111;'> 5.57KB </span>","children":null,"spread":false},{"title":"mask_rcnn_convnext_tiny_patch4_window7_mstrain_480-800_adamw_3x_coco_in1k.py <span style='color:#111;'> 3.08KB </span>","children":null,"spread":false}],"spread":true},{"title":"_base_","children":[{"title":"models","children":[{"title":"mask_rcnn_convnext_fpn.py <span style='color:#111;'> 4.09KB </span>","children":null,"spread":false},{"title":"cascade_mask_rcnn_convnext_fpn.py <span style='color:#111;'> 7.04KB </span>","children":null,"spread":false}],"spread":true},{"title":"default_runtime.py <span style='color:#111;'> 378B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"mmcv_custom","children":[{"title":"layer_decay_optimizer_constructor.py <span style='color:#111;'> 4.76KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 504B </span>","children":null,"spread":false},{"title":"runner","children":[{"title":"checkpoint.py <span style='color:#111;'> 2.82KB </span>","children":null,"spread":false}],"spread":true},{"title":"customized_text.py <span style='color:#111;'> 4.82KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"run_with_submitit.py <span style='color:#111;'> 3.92KB </span>","children":null,"spread":false},{"title":"datasets.py <span style='color:#111;'> 3.43KB </span>","children":null,"spread":false},{"title":"CONTRIBUTING.md <span style='color:#111;'> 1.21KB </span>","children":null,"spread":false},{"title":"CODE_OF_CONDUCT.md <span style='color:#111;'> 3.45KB </span>","children":null,"spread":false},{"title":"models","children":[{"title":"convnext_isotropic.py <span style='color:#111;'> 3.61KB </span>","children":null,"spread":false},{"title":"convnext.py <span style='color:#111;'> 8.80KB </span>","children":null,"spread":false}],"spread":true},{"title":"LICENSE <span style='color:#111;'> 1.06KB </span>","children":null,"spread":false},{"title":"engine.py <span style='color:#111;'> 7.11KB </span>","children":null,"spread":false},{"title":"TRAINING.md <span style='color:#111;'> 16.18KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 16.93KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 6.01KB </span>","children":null,"spread":false},{"title":"optim_factory.py <span style='color:#111;'> 7.17KB </span>","children":null,"spread":false},{"title":"semantic_segmentation","children":[{"title":"backbone","children":[{"title":"convnext.py <span style='color:#111;'> 7.27KB </span>","children":null,"spread":false}],"spread":false},{"title":"README.md <span style='color:#111;'> 4.10KB </span>","children":null,"spread":false},{"title":"configs","children":[{"title":"convnext","children":[{"title":"upernet_convnext_base_512_160k_ade20k_ss.py <span style='color:#111;'> 1.74KB </span>","children":null,"spread":false},{"title":"upernet_convnext_base_640_160k_ade20k_ms.py <span style='color:#111;'> 1.67KB </span>","children":null,"spread":false},{"title":"upernet_convnext_tiny_512_160k_ade20k_ms.py <span style='color:#111;'> 1.66KB </span>","children":null,"spread":false},{"title":"upernet_convnext_base_512_160k_ade20k_ms.py <span style='color:#111;'> 1.66KB </span>","children":null,"spread":false},{"title":"upernet_convnext_large_640_160k_ade20k_ms.py <span style='color:#111;'> 1.67KB </span>","children":null,"spread":false},{"title":"upernet_convnext_small_512_160k_ade20k_ms.py <span style='color:#111;'> 1.63KB </span>","children":null,"spread":false},{"title":"upernet_convnext_tiny_512_160k_ade20k_ss.py <span style='color:#111;'> 1.73KB </span>","children":null,"spread":false},{"title":"upernet_convnext_base_640_160k_ade20k_ss.py <span style='color:#111;'> 1.74KB </span>","children":null,"spread":false},{"title":"upernet_convnext_large_640_160k_ade20k_ss.py <span style='color:#111;'> 1.75KB </span>","children":null,"spread":false},{"title":"upernet_convnext_xlarge_640_160k_ade20k_ss.py <span style='color:#111;'> 1.75KB </span>","children":null,"spread":false},{"title":"upernet_convnext_small_512_160k_ade20k_ss.py <span style='color:#111;'> 1.71KB </span>","children":null,"spread":false},{"title":"upernet_convnext_xlarge_640_160k_ade20k_ms.py <span style='color:#111;'> 1.68KB </span>","children":null,"spread":false}],"spread":false},{"title":"_base_","children":[{"title":"models","children":[{"title":"upernet_convnext.py <span style='color:#111;'> 1.37KB </span>","children":null,"spread":false}],"spread":false},{"title":"default_runtime.py <span style='color:#111;'> 331B </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"mmcv_custom","children":[{"title":"layer_decay_optimizer_constructor.py <span style='color:#111;'> 4.76KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 693B </span>","children":null,"spread":false},{"title":"apex_runner","children":[{"title":"checkpoint.py <span style='color:#111;'> 2.82KB </span>","children":null,"spread":false}],"spread":false},{"title":"customized_text.py <span style='color:#111;'> 4.82KB </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"main.py <span style='color:#111;'> 22.54KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明