通过误差状态卡尔曼滤波器 使用GPS /INS 的传感器融合实现定位的MATLAB

上传者: 38334677 | 上传时间: 2022-09-07 09:03:18 | 文件大小: 45KB | 文件类型: ZIP
卡尔曼定位 通过误差状态卡尔曼滤波器使用 GPS/INS/罗盘的传感器融合实现定位的 MATLAB。 MATLAB 代码大量借鉴了 Paul D. Groves 的著作《GNSS 原理、惯性和多传感器集成导航系统》,他的代码被标记为他的,并在 BSD 许可下持有。 请注意:我无法提供我的测试数据,因为它是使用通用汽车拥有的车辆收集的。请参阅初始化脚本中的注释以获取数据格式的描述,您应该能够调整自己的数据。或者,本书附带一张 CD-ROM,其中包含他的代码(完全工作的过滤器)以及用于生成测试数据的系统

文件下载

资源详情

[{"title":"( 40 个子文件 45KB ) 通过误差状态卡尔曼滤波器 使用GPS /INS 的传感器融合实现定位的MATLAB","children":[{"title":"kalman-localization-mr","children":[{"title":"MATLAB","children":[{"title":"GrovesCode","children":[{"title":"CTM_to_Euler.m <span style='color:#111;'> 800B </span>","children":null,"spread":false},{"title":"Gravity_ECEF.m <span style='color:#111;'> 1.37KB </span>","children":null,"spread":false},{"title":"Initialize_LC_P_matrix.m <span style='color:#111;'> 1.22KB </span>","children":null,"spread":false},{"title":"Euler_to_CTM.m <span style='color:#111;'> 1.25KB </span>","children":null,"spread":false},{"title":"Skew_symmetric.m <span style='color:#111;'> 507B </span>","children":null,"spread":false},{"title":"License.txt <span style='color:#111;'> 1.48KB </span>","children":null,"spread":false},{"title":"Kinematics_ECEF.m <span style='color:#111;'> 3.56KB </span>","children":null,"spread":false},{"title":"pv_ECEF_to_NED.m <span style='color:#111;'> 2.16KB </span>","children":null,"spread":false},{"title":"NED_to_ECEF.m <span style='color:#111;'> 1.91KB </span>","children":null,"spread":false},{"title":"Nav_equations_ECEF.m <span style='color:#111;'> 3.39KB </span>","children":null,"spread":false},{"title":"ECEF_to_NED.m <span style='color:#111;'> 2.39KB </span>","children":null,"spread":false}],"spread":false},{"title":"Utilities","children":[{"title":"deg2utm.m <span style='color:#111;'> 3.84KB </span>","children":null,"spread":false},{"title":"nearestSPD.m <span style='color:#111;'> 1.84KB </span>","children":null,"spread":false},{"title":"figurec.m <span style='color:#111;'> 1.39KB </span>","children":null,"spread":false},{"title":"CalibAccel.m <span style='color:#111;'> 8.35KB </span>","children":null,"spread":false},{"title":"inversePD.m <span style='color:#111;'> 300B </span>","children":null,"spread":false}],"spread":true},{"title":"generate_error_metrics.m <span style='color:#111;'> 1.38KB </span>","children":null,"spread":false},{"title":"run_filter.m <span style='color:#111;'> 2.53KB </span>","children":null,"spread":false},{"title":"initialize.m <span style='color:#111;'> 4.62KB </span>","children":null,"spread":false},{"title":"generate_plots.m <span style='color:#111;'> 6.44KB </span>","children":null,"spread":false},{"title":"Loosely_coupled_INS_GNSS.m <span style='color:#111;'> 9.43KB </span>","children":null,"spread":false},{"title":"static_calibration.m <span style='color:#111;'> 1.94KB </span>","children":null,"spread":false},{"title":"LC_KF_Epoch.m <span style='color:#111;'> 7.32KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 918B </span>","children":null,"spread":false},{"title":"Tuning","children":[{"title":"tune_noise_psd.m <span style='color:#111;'> 2.25KB </span>","children":null,"spread":false},{"title":"tune_lever.m <span style='color:#111;'> 1.94KB </span>","children":null,"spread":false},{"title":"tune_pose_sd.m <span style='color:#111;'> 1.92KB </span>","children":null,"spread":false},{"title":"tune_lag.m <span style='color:#111;'> 1.53KB </span>","children":null,"spread":false},{"title":"tune_n.m <span style='color:#111;'> 1.83KB </span>","children":null,"spread":false},{"title":"tune_bias_unc.m <span style='color:#111;'> 1.78KB </span>","children":null,"spread":false},{"title":"tune_pose_unc.m <span style='color:#111;'> 2.38KB </span>","children":null,"spread":false},{"title":"tune_bias_psd.m <span style='color:#111;'> 2.38KB </span>","children":null,"spread":false},{"title":"tune_R_minmax.m <span style='color:#111;'> 9.75KB </span>","children":null,"spread":false},{"title":"tune_gps_correction.m <span style='color:#111;'> 2.05KB </span>","children":null,"spread":false},{"title":"tune_epoch.m <span style='color:#111;'> 1.58KB </span>","children":null,"spread":false},{"title":"tune_init_heading.m <span style='color:#111;'> 2.19KB </span>","children":null,"spread":false}],"spread":false},{"title":"adapt_noise_covariance.m <span style='color:#111;'> 598B </span>","children":null,"spread":false}],"spread":false},{"title":"LICENSE <span style='color:#111;'> 553B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 269B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 721B </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明