自爆绝缘子语义分割,deeplab_v3+完整pytorch工程代码

上传者: 37615507 | 上传时间: 2022-04-22 17:06:23 | 文件大小: 198.1MB | 文件类型: ZIP
采用pytorch深度学习框架实现的deeplab_v3+语义分割任务,谷歌deeplab系列性能最好也是最复杂的一个版本,可满足绝大部分基础语义分割场景。主干网络在算力不足时可选择轻量版的mobilenet_v2,算力足够时可选择Xception。 deeplab_v3+:用一个简单有效的解码器模块扩展deeplab_v3优化细分结果,尤其是沿目标边界。此外,在这种编码器 - 解码器结构中,可以通过空洞卷积任意地控制所提取的编码器特征的分辨率,以平衡准确率和运行时间。 本代码可作为入门计算机视觉语义分割任务时的学习了解用处,也可作为高校大学生的毕业课程设计使用。

文件下载

资源详情

[{"title":"( 39 个子文件 198.1MB ) 自爆绝缘子语义分割,deeplab_v3+完整pytorch工程代码","children":[{"title":"deeplabv3-plus-pytorch-insulator","children":[{"title":"deeplab_jyz.py <span style='color:#111;'> 16.11KB </span>","children":null,"spread":false},{"title":"summary.py <span style='color:#111;'> 542B </span>","children":null,"spread":false},{"title":"img","children":[{"title":"sliding_window.py <span style='color:#111;'> 2.70KB </span>","children":null,"spread":false},{"title":"street.jpg <span style='color:#111;'> 437.08KB </span>","children":null,"spread":false}],"spread":true},{"title":"logs","children":[{"title":"README.MD <span style='color:#111;'> 98B </span>","children":null,"spread":false},{"title":"epoch_loss_2022_02_17_15_04_16.txt <span style='color:#111;'> 1.91KB </span>","children":null,"spread":false},{"title":"epoch_val_loss_2022_02_17_15_04_16.txt <span style='color:#111;'> 1.92KB </span>","children":null,"spread":false},{"title":"ep098-loss0.126-val_loss0.125.pth <span style='color:#111;'> 209.59MB </span>","children":null,"spread":false},{"title":"epoch_loss_2022_02_17_15_04_16.png <span style='color:#111;'> 37.78KB </span>","children":null,"spread":false}],"spread":true},{"title":"get_miou.py <span style='color:#111;'> 3.01KB </span>","children":null,"spread":false},{"title":"json_to_dataset.py <span style='color:#111;'> 3.23KB </span>","children":null,"spread":false},{"title":"nets","children":[{"title":"__init__.py <span style='color:#111;'> 1B </span>","children":null,"spread":false},{"title":"xception.py <span style='color:#111;'> 7.28KB </span>","children":null,"spread":false},{"title":"mobilenetv2.py <span style='color:#111;'> 5.99KB </span>","children":null,"spread":false},{"title":"deeplabv3_training.py <span style='color:#111;'> 3.14KB </span>","children":null,"spread":false},{"title":"deeplabv3_plus.py <span style='color:#111;'> 7.55KB </span>","children":null,"spread":false}],"spread":true},{"title":"train.py <span style='color:#111;'> 15.33KB </span>","children":null,"spread":false},{"title":"predict.py <span style='color:#111;'> 7.32KB </span>","children":null,"spread":false},{"title":"voc_annotation.py <span style='color:#111;'> 2.03KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"deeplab.py <span style='color:#111;'> 14.37KB </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 150B </span>","children":null,"spread":false},{"title":"model_data","children":[{"title":"deeplab_mobilenetv2.pth <span style='color:#111;'> 22.40MB </span>","children":null,"spread":false}],"spread":false},{"title":"VOCdevkit","children":[{"title":"VOC2007","children":[{"title":"SegmentationClass","children":[{"title":"README.md <span style='color:#111;'> 55B </span>","children":null,"spread":false}],"spread":false},{"title":"JPEGImages","children":[{"title":"README.md <span style='color:#111;'> 49B </span>","children":null,"spread":false}],"spread":false},{"title":"ImageSets","children":[{"title":"Segmentation","children":[{"title":"README.md <span style='color:#111;'> 38B </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":false}],"spread":false},{"title":"README.md <span style='color:#111;'> 5.12KB </span>","children":null,"spread":false},{"title":"常见问题汇总.md <span style='color:#111;'> 35.65KB </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"callbacks.py <span style='color:#111;'> 2.01KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 1.26KB </span>","children":null,"spread":false},{"title":"utils_fit.py <span style='color:#111;'> 4.56KB </span>","children":null,"spread":false},{"title":"dataloader.py <span style='color:#111;'> 5.00KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 1B </span>","children":null,"spread":false},{"title":"utils_metrics.py <span style='color:#111;'> 8.99KB </span>","children":null,"spread":false}],"spread":false},{"title":"predict_jyz.py <span style='color:#111;'> 7.10KB </span>","children":null,"spread":false},{"title":"datasets","children":[{"title":"SegmentationClass","children":[{"title":"1.png <span style='color:#111;'> 5.31KB </span>","children":null,"spread":false}],"spread":false},{"title":"JPEGImages","children":[{"title":"1.jpg <span style='color:#111;'> 50.60KB </span>","children":null,"spread":false}],"spread":false},{"title":"before","children":[{"title":"1.json <span style='color:#111;'> 69.95KB </span>","children":null,"spread":false},{"title":"1.jpg <span style='color:#111;'> 48.46KB </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明