[{"title":"( 32 个子文件 58.14MB ) LSTM相关论文(中文加英文)","children":[{"title":"LSTM","children":[{"title":"基于深度学习算法的文本情感分析.caj <span style='color:#111;'> 2.27MB </span>","children":null,"spread":false},{"title":"文本情感分析在商品评论中的应用研究--以京东智能冰箱评论为例.caj <span style='color:#111;'> 3.24MB </span>","children":null,"spread":false},{"title":"基于极性转移和双向LSTM的文本情感分析.pdf <span style='color:#111;'> 210.43KB </span>","children":null,"spread":false},{"title":"基于卷积神经网络和Tree-LSTM的微博情感分析.pdf <span style='color:#111;'> 1.57MB </span>","children":null,"spread":false},{"title":"基于领域词典的网络商品评论情感分析.pdf <span style='color:#111;'> 1.45MB </span>","children":null,"spread":false},{"title":"融合Gate过滤机制与深度Bi-LSTM-CRF的汉语语义角色标注.pdf <span style='color:#111;'> 2.37MB </span>","children":null,"spread":false},{"title":"基于循环神经网络和注意力模型的文本情感分析.pdf <span style='color:#111;'> 940.71KB </span>","children":null,"spread":false},{"title":"基于商品评论文本的情感分析研究.pdf <span style='color:#111;'> 1.33MB </span>","children":null,"spread":false},{"title":"基于深度学习的微博文本情感分析研究.caj <span style='color:#111;'> 3.53MB </span>","children":null,"spread":false},{"title":"20180528@acl_2018_Learning to Control the Specificity in Neural Response Generation.pdf <span style='color:#111;'> 739.71KB </span>","children":null,"spread":false},{"title":"基于TensorFlow分布式与前景背景分离的实时图像风格化算法.caj <span style='color:#111;'> 6.17MB </span>","children":null,"spread":false},{"title":"(东华大学)基于LSTM的商品评论情感分析.pdf <span style='color:#111;'> 1.01MB </span>","children":null,"spread":false},{"title":"融合Bi-LSTM和文本信息的对象级情感分析.caj <span style='color:#111;'> 4.07MB </span>","children":null,"spread":false},{"title":"基于深度学习的初中教学问答系统研究与设计.caj <span style='color:#111;'> 1.46MB </span>","children":null,"spread":false},{"title":"用于情感分类的双向深度LSTM.pdf <span style='color:#111;'> 361.10KB </span>","children":null,"spread":false},{"title":"基于单词情感向量记忆网络的方面情感分析研究与应用.caj <span style='color:#111;'> 6.50MB </span>","children":null,"spread":false},{"title":"(北邮)基于长短时记忆网络的中文文本情感分析.caj <span style='color:#111;'> 3.30MB </span>","children":null,"spread":false},{"title":"20180529@coling_2016_Effective LSTMs for Target-Dependent Sentiment Classification.pdf <span style='color:#111;'> 601.44KB </span>","children":null,"spread":false},{"title":"互联网商品评论情感分析研究.caj <span style='color:#111;'> 1.30MB </span>","children":null,"spread":false},{"title":"基于LSTM的商品评论情感分析.pdf <span style='color:#111;'> 420.68KB </span>","children":null,"spread":false},{"title":"文本情感分析及其应用研究.caj <span style='color:#111;'> 4.05MB </span>","children":null,"spread":false},{"title":"基于双向LSTM模型的文本情感分类.pdf <span style='color:#111;'> 354.51KB </span>","children":null,"spread":false},{"title":"基于深层注意力的LSTM的特定主题情感分析.pdf <span style='color:#111;'> 1.21MB </span>","children":null,"spread":false},{"title":"基于双向LSTM神经网络模型的中文分词.pdf <span style='color:#111;'> 533.92KB </span>","children":null,"spread":false},{"title":"基于两种LSTM结构的文本情感分析.pdf <span style='color:#111;'> 1.28MB </span>","children":null,"spread":false},{"title":"基于LSTM神经网络的中文情感分类.pdf <span style='color:#111;'> 926.50KB </span>","children":null,"spread":false},{"title":"基于多种LSTM结构的文本情感分析.caj <span style='color:#111;'> 2.81MB </span>","children":null,"spread":false},{"title":"基于LSTM和注意力机制的情感分析服务设计与实现.caj <span style='color:#111;'> 5.20MB </span>","children":null,"spread":false},{"title":"基于迁移学习的中文短文本情绪分析.caj <span style='color:#111;'> 2.96MB </span>","children":null,"spread":false},{"title":"基于中文知识库的问答系统研究与实现.caj <span style='color:#111;'> 2.33MB </span>","children":null,"spread":false},{"title":"基于注意力长短时记忆网络的中文词性标注模型.pdf <span style='color:#111;'> 378.93KB </span>","children":null,"spread":false},{"title":"基于隐式产品特征的网络商品评论情感分析研究.caj <span style='color:#111;'> 1.11MB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]