CVPR2019-ocr.zip

上传者: qingfenglu | 上传时间: 2022-05-09 01:43:26 | 文件大小: 332.47MB | 文件类型: ZIP
Online handwritten Chinese text recognition (OHCTR) is a challenging problem as it involves a large-scale character set, ambiguous segmentation, and variable-length input sequences. In this paper, we exploit the outstanding capability of path signature to translate online pen-tip trajectories into informative signature feature maps using a sliding window-based method, successfully capturing the analytic and geometric properties of pen strokes with strong local invariance and robustness. A multi-spatial-context fully convolutional recurrent network (MC-FCRN) is proposed to exploit the multiple spatial contexts from the signature feature maps and generate a prediction sequence while completely avoiding the difficult segmentation problem. Furthermore, an implicit language model is developed to make predictions based on semantic context within a predicting feature sequence, providing a new perspective for incorporating lexicon constraints and prior knowledge about a certain language in the recognition procedure. Experiments on two standard benchmarks, Dataset-CASIA and Dataset-ICDAR, yielded outstanding results, with correct rates of 97.10% and 97.15%, respectively, which are significantly better than the best result reported thus far in the literature.

文件下载

资源详情

[{"title":"( 8 个子文件 332.47MB ) CVPR2019-ocr.zip","children":[{"title":"1811.00357_Latent Variable Model for Multi-modal Translation.pdf <span style='color:#111;'> 612.85KB </span>","children":null,"spread":false},{"title":"Xie_Aggregation_Cross-Entropy_for_Sequence_Recognition_CVPR_2019_paper.pdf <span style='color:#111;'> 2.72MB </span>","children":null,"spread":false},{"title":"1908.03265v1_ON THE VARIANCE OF THE ADAPTIVE LEARNING.pdf <span style='color:#111;'> 1.44MB </span>","children":null,"spread":false},{"title":"jtjgwld.xps <span style='color:#111;'> 182.50MB </span>","children":null,"spread":false},{"title":"Bhunia_Handwriting_Recognition_in_Low-Resource_Scripts_Using_Adversarial_Learning_CVPR_2019_paper.pdf <span style='color:#111;'> 972.27KB </span>","children":null,"spread":false},{"title":"1610.02616.pdf <span style='color:#111;'> 1.68MB </span>","children":null,"spread":false},{"title":"jtjgwld.xps.pdf <span style='color:#111;'> 162.20MB </span>","children":null,"spread":false},{"title":"Wang+et+al.+-+2018+-+Explore+Uncertainty+in+Residual+Networks+for+Crowds+Flow+Prediction.pdf <span style='color:#111;'> 1.78MB </span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明