用IMU数据进行位置和姿态估计

上传者: pcbsuper | 上传时间: 2019-12-21 18:52:26 | 文件大小: 5.33MB | 文件类型: pdf
用IMU的数据进行机器人位置和姿态的估计,比如acc或者gyro积分每个sample怎么进行坐标变换,怎么由rawdata得到位置和姿态信息的计算细节等。 In recent years, microelectromechanical system (MEMS) inertial sensors (3D accelerometers and 3D gyroscopes) have become widely available due to their small size and low cost. Inertial sensor measurements are obtained at high sampling rates and can be integrated to obtain position and orientation information. These estimates are accurate on a short time scale, but suer from integration drift over longer time scales. To overcome this issue, inertial sensors are typically combined with additional sensors and models. In this tutorial we focus on the signal processing aspects of position and orientation estimation using inertial sensors. We discuss dierent modeling choices and a selected number of important algorithms. The algorithms include optimization-based smoothing and ltering as well as computationally cheaper extended Kalman lter and complementary lter implementations. The quality of their estimates is illustrated using both experimental and simulated data.

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明