基于YOLOV5的车牌定位和识别源码.rar

上传者: m0_64795180 | 上传时间: 2022-04-17 16:08:06 | 文件大小: 321.5MB | 文件类型: RAR
基于YOLOV5目标检测模型的实时车牌识别,包括对车辆的车牌区域精确定位,利用校正探测器对定位的车牌进行边框校正处理,使用增强神经网络模型对车牌区域进行超分辨率技术处理和光学字符识别。经过多次试验测试,可以对视频中的车辆车牌实时识别以及图片中的车辆车牌进行准确定位和识别,识别速度快,准确率高,比那些传统车牌识别方法效果好

文件下载

资源详情

[{"title":"( 68 个子文件 321.5MB ) 基于YOLOV5的车牌定位和识别源码.rar","children":[{"title":"基于YOLOV5的车牌定位和识别源码","children":[{"title":"基于YOLOV5的车牌定位和识别源码","children":[{"title":"plate-main","children":[{"title":"models","children":[{"title":"common.py <span style='color:#111;'> 3.57KB </span>","children":null,"spread":false},{"title":"LPRNet.py <span style='color:#111;'> 4.02KB </span>","children":null,"spread":false},{"title":"yolo.py <span style='color:#111;'> 10.47KB </span>","children":null,"spread":false},{"title":"hub","children":[{"title":"yolov3-spp.yaml <span style='color:#111;'> 1.63KB </span>","children":null,"spread":false},{"title":"yolov5-fpn.yaml <span style='color:#111;'> 1.34KB </span>","children":null,"spread":false},{"title":"yolov5-panet.yaml <span style='color:#111;'> 1.55KB </span>","children":null,"spread":false}],"spread":true},{"title":"yolov5s.yaml <span style='color:#111;'> 1.55KB </span>","children":null,"spread":false},{"title":"yolo1.py <span style='color:#111;'> 13.25KB </span>","children":null,"spread":false},{"title":"yolov5x.yaml <span style='color:#111;'> 1.55KB </span>","children":null,"spread":false},{"title":"yolov5l.yaml <span style='color:#111;'> 1.54KB </span>","children":null,"spread":false},{"title":"spinenet.py <span style='color:#111;'> 4.76KB </span>","children":null,"spread":false},{"title":"export.py <span style='color:#111;'> 2.83KB </span>","children":null,"spread":false},{"title":"yolov5m.yaml <span style='color:#111;'> 1.55KB </span>","children":null,"spread":false},{"title":"experimental.py <span style='color:#111;'> 5.35KB </span>","children":null,"spread":false}],"spread":false},{"title":"runs","children":[{"title":"Aug08_11-39-00_DESKTOP-7GCIPTN","children":[{"title":"LR.png <span style='color:#111;'> 50.67KB </span>","children":null,"spread":false},{"title":"opt.yaml <span style='color:#111;'> 331B </span>","children":null,"spread":false},{"title":"events.out.tfevents.1596857940.DESKTOP-7GCIPTN.24020.0 <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"hyp.yaml <span style='color:#111;'> 282B </span>","children":null,"spread":false},{"title":"labels.png <span style='color:#111;'> 217.42KB </span>","children":null,"spread":false}],"spread":true},{"title":"Sep18_13-37-40_DESKTOP-7GCIPTN","children":[{"title":"LR.png <span style='color:#111;'> 51.42KB </span>","children":null,"spread":false},{"title":"events.out.tfevents.1600407460.DESKTOP-7GCIPTN.6048.0 <span style='color:#111;'> 40B </span>","children":null,"spread":false}],"spread":true},{"title":"events.out.tfevents.1594440460.ml-02.4059172.0 <span style='color:#111;'> 2.93MB </span>","children":null,"spread":false},{"title":"Jul11_19-58-12_DESKTOP-7GCIPTN","children":[{"title":"LR.png <span style='color:#111;'> 50.67KB </span>","children":null,"spread":false},{"title":"events.out.tfevents.1594468692.DESKTOP-7GCIPTN.15976.0 <span style='color:#111;'> 40B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"tutorial.ipynb <span style='color:#111;'> 3.11MB </span>","children":null,"spread":false},{"title":"data <span style='color:#111;'> 1B </span>","children":null,"spread":false},{"title":"test.py <span style='color:#111;'> 12.13KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 21.84KB </span>","children":null,"spread":false},{"title":"Dockerfile <span style='color:#111;'> 1.74KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 34.30KB </span>","children":null,"spread":false},{"title":"detect.py <span style='color:#111;'> 7.83KB </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 965B </span>","children":null,"spread":false},{"title":"simsun.ttc <span style='color:#111;'> 10.01MB </span>","children":null,"spread":false},{"title":"inference","children":[{"title":"images","children":[{"title":"8.jpg <span style='color:#111;'> 27.09KB </span>","children":null,"spread":false},{"title":"6.jpg <span style='color:#111;'> 200.61KB </span>","children":null,"spread":false},{"title":"5.jpg <span style='color:#111;'> 41.67KB </span>","children":null,"spread":false},{"title":"11.jpg <span style='color:#111;'> 35.53KB </span>","children":null,"spread":false},{"title":"4.jpg <span style='color:#111;'> 38.86KB </span>","children":null,"spread":false},{"title":"10.jpg <span style='color:#111;'> 90.17KB </span>","children":null,"spread":false},{"title":"9.jpg <span style='color:#111;'> 224.21KB </span>","children":null,"spread":false},{"title":"7.jpg <span style='color:#111;'> 14.82KB </span>","children":null,"spread":false}],"spread":false},{"title":"output","children":[{"title":"8.jpg <span style='color:#111;'> 53.71KB </span>","children":null,"spread":false},{"title":"6.jpg <span style='color:#111;'> 385.05KB </span>","children":null,"spread":false},{"title":"5.jpg <span style='color:#111;'> 82.79KB </span>","children":null,"spread":false},{"title":"11.jpg <span style='color:#111;'> 71.58KB </span>","children":null,"spread":false},{"title":"4.jpg <span style='color:#111;'> 77.45KB </span>","children":null,"spread":false},{"title":"10.jpg <span style='color:#111;'> 173.91KB </span>","children":null,"spread":false},{"title":"9.jpg <span style='color:#111;'> 430.16KB </span>","children":null,"spread":false},{"title":"7.jpg <span style='color:#111;'> 30.82KB </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":".dockerignore <span style='color:#111;'> 3.52KB </span>","children":null,"spread":false},{"title":"weights","children":[{"title":"last.pt <span style='color:#111;'> 14.07MB </span>","children":null,"spread":false},{"title":"download_weights.sh <span style='color:#111;'> 244B </span>","children":null,"spread":false},{"title":"yolov5m.pt <span style='color:#111;'> 41.87MB </span>","children":null,"spread":false},{"title":"yolov5x.pt <span style='color:#111;'> 170.14MB </span>","children":null,"spread":false},{"title":"yolov5l.pt <span style='color:#111;'> 91.57MB </span>","children":null,"spread":false},{"title":"yolov5s.pt <span style='color:#111;'> 14.46MB </span>","children":null,"spread":false},{"title":"Final_LPRNet_model.pth <span style='color:#111;'> 1.72MB </span>","children":null,"spread":false}],"spread":false},{"title":"README.md <span style='color:#111;'> 97B </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"grneral.py <span style='color:#111;'> 54.35KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 51.46KB </span>","children":null,"spread":false},{"title":"datasets.py <span style='color:#111;'> 36.36KB </span>","children":null,"spread":false},{"title":"activations.py <span style='color:#111;'> 1.62KB </span>","children":null,"spread":false},{"title":"torch_utils.py <span style='color:#111;'> 8.89KB </span>","children":null,"spread":false},{"title":"google_utils.py <span style='color:#111;'> 4.28KB </span>","children":null,"spread":false}],"spread":false},{"title":"hubconf.py <span style='color:#111;'> 3.00KB </span>","children":null,"spread":false},{"title":"train1.py <span style='color:#111;'> 27.83KB </span>","children":null,"spread":false},{"title":"read_yaml.py <span style='color:#111;'> 4.80KB </span>","children":null,"spread":false}],"spread":false},{"title":"运行说明.txt <span style='color:#111;'> 262B </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明