图神经网络 - Python实现LSTM-GNN时间序列预测

上传者: m0_57362105 | 上传时间: 2022-11-21 11:26:19 | 文件大小: 163KB | 文件类型: ZIP
图神经网络 | Python实现LSTM-GNN时间序列预测 LSTM-GNN用于病人的结果预测:一个混合模型,结合了用于提取时间特征的长短期记忆网络(LSTM)和用于提取病人邻域信息的图谱神经网络(GNN)。 关于预测重症监护室(ICU)病人结果的工作主要集中在生理时间序列数据上,基本上忽略了诊断和药物等稀疏数据。当它们被包括在内时,它们通常是在模型的后期阶段被串联起来的,这可能难以从更罕见的疾病模式中学习。通过在图中连接类似的病人,将诊断作为关系信息加以利用。 LSTM-GNNs在eICU数据库的住院时间预测任务中的表现优于仅有LSTM的基线。利用图神经网络从相邻的病人病例中提取信息是一个很有前途的研究方向,在电子健康记录的监督学习性能方面产生了切实的回报。

文件下载

资源详情

[{"title":"( 82 个子文件 163KB ) 图神经网络 - Python实现LSTM-GNN时间序列预测","children":[{"title":"eICU_preprocessing","children":[{"title":"labels.sql <span style='color:#111;'> 2.83KB </span>","children":null,"spread":false},{"title":"split_train_test.py <span style='color:#111;'> 2.81KB </span>","children":null,"spread":false},{"title":"timeseries.sql <span style='color:#111;'> 9.57KB </span>","children":null,"spread":false},{"title":"flat_features.sql <span style='color:#111;'> 2.24KB </span>","children":null,"spread":false},{"title":"run_all_preprocessing.py <span style='color:#111;'> 754B </span>","children":null,"spread":false},{"title":"create_all_tables.sql <span style='color:#111;'> 2.09KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"timeseries.py <span style='color:#111;'> 9.69KB </span>","children":null,"spread":false},{"title":"diagnoses.py <span style='color:#111;'> 8.84KB </span>","children":null,"spread":false},{"title":"flat_and_labels.py <span style='color:#111;'> 2.87KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.85KB </span>","children":null,"spread":false},{"title":"diagnoses.sql <span style='color:#111;'> 2.49KB </span>","children":null,"spread":false}],"spread":false},{"title":"graph_construction","children":[{"title":"get_diagnosis_strings.py <span style='color:#111;'> 1.76KB </span>","children":null,"spread":false},{"title":"checking","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"manual.py <span style='color:#111;'> 903B </span>","children":null,"spread":false},{"title":"sanity.py <span style='color:#111;'> 2.39KB </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"bert.py <span style='color:#111;'> 3.91KB </span>","children":null,"spread":false},{"title":"create_bert_graph.py <span style='color:#111;'> 3.58KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 779B </span>","children":null,"spread":false},{"title":"create_graph.py <span style='color:#111;'> 8.76KB </span>","children":null,"spread":false}],"spread":true},{"title":"train_dynamic.py <span style='color:#111;'> 11.51KB </span>","children":null,"spread":false},{"title":"paths.json <span style='color:#111;'> 162B </span>","children":null,"spread":false},{"title":"注意事项.md <span style='color:#111;'> 6.67KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.11KB </span>","children":null,"spread":false},{"title":"train_ns_gnn.py <span style='color:#111;'> 11.07KB </span>","children":null,"spread":false},{"title":"src","children":[{"title":"models","children":[{"title":"utils.py <span style='color:#111;'> 4.03KB </span>","children":null,"spread":false},{"title":"dgnn.py <span style='color:#111;'> 4.11KB </span>","children":null,"spread":false},{"title":"pyg_ns.py <span style='color:#111;'> 12.60KB </span>","children":null,"spread":false},{"title":"pyg_whole.py <span style='color:#111;'> 4.27KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"pyg_lstmgnn.py <span style='color:#111;'> 3.14KB </span>","children":null,"spread":false},{"title":"lstm.py <span style='color:#111;'> 4.31KB </span>","children":null,"spread":false}],"spread":true},{"title":"utils.py <span style='color:#111;'> 1.11KB </span>","children":null,"spread":false},{"title":"metrics.py <span style='color:#111;'> 5.93KB </span>","children":null,"spread":false},{"title":"significance_testing","children":[{"title":"load_and_inspect.py <span style='color:#111;'> 531B </span>","children":null,"spread":false},{"title":"print_latex.py <span style='color:#111;'> 2.21KB </span>","children":null,"spread":false},{"title":"t-test.py <span style='color:#111;'> 881B </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"args.py <span style='color:#111;'> 14.12KB </span>","children":null,"spread":false},{"title":"dataloader","children":[{"title":"ts_reader.py <span style='color:#111;'> 4.32KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"pyg_reader.py <span style='color:#111;'> 4.80KB </span>","children":null,"spread":false},{"title":"convert.py <span style='color:#111;'> 3.37KB </span>","children":null,"spread":false}],"spread":true},{"title":"hyperparameters","children":[{"title":"best_parameters.py <span style='color:#111;'> 6.31KB </span>","children":null,"spread":false},{"title":"search.py <span style='color:#111;'> 5.76KB </span>","children":null,"spread":false},{"title":"ns_gnn_search.py <span style='color:#111;'> 1.16KB </span>","children":null,"spread":false},{"title":"lstm_search.py <span style='color:#111;'> 1.89KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"lstmgnn_search.py <span style='color:#111;'> 1.10KB </span>","children":null,"spread":false},{"title":"dynamic_lstmgnn_search.py <span style='color:#111;'> 1.33KB </span>","children":null,"spread":false}],"spread":false},{"title":"README.md <span style='color:#111;'> 2.98KB </span>","children":null,"spread":false}],"spread":true},{"title":"results","children":[{"title":"dyn_gat_ihm.csv <span style='color:#111;'> 25.67KB </span>","children":null,"spread":false},{"title":"lstm_ihm_no_diag.csv <span style='color:#111;'> 14.22KB </span>","children":null,"spread":false},{"title":"lstmgnn_gat_ihm.csv <span style='color:#111;'> 18.48KB </span>","children":null,"spread":false},{"title":"lstmgnn_mpnn_ihm.csv <span style='color:#111;'> 28.16KB </span>","children":null,"spread":false},{"title":"lstm_los_no_diag.csv <span style='color:#111;'> 11.53KB </span>","children":null,"spread":false},{"title":"lstmgnn_sage_los.csv <span style='color:#111;'> 15.19KB </span>","children":null,"spread":false},{"title":"lstmgnn_sage_ihm_no_diag.csv <span style='color:#111;'> 18.70KB </span>","children":null,"spread":false},{"title":"lstm_los.csv <span style='color:#111;'> 11.51KB </span>","children":null,"spread":false},{"title":"dyn_gcn_los.csv <span style='color:#111;'> 12.47KB </span>","children":null,"spread":false},{"title":"ns_gat_los.csv <span style='color:#111;'> 13.43KB </span>","children":null,"spread":false},{"title":"dyn_gat_los.csv <span style='color:#111;'> 22.52KB </span>","children":null,"spread":false},{"title":"lstmgnn_gat_los.csv <span style='color:#111;'> 16.51KB </span>","children":null,"spread":false},{"title":"lstmgnn_sage_ihm.csv <span style='color:#111;'> 15.86KB </span>","children":null,"spread":false},{"title":"lstm_ihm.csv <span style='color:#111;'> 14.25KB </span>","children":null,"spread":false},{"title":"ns_sage_ihm.csv <span style='color:#111;'> 11.24KB </span>","children":null,"spread":false},{"title":"dyn_mpnn_ihm.csv <span style='color:#111;'> 17.74KB </span>","children":null,"spread":false},{"title":"lstmgnn_mpnn_ihm_no_diag.csv <span style='color:#111;'> 15.12KB </span>","children":null,"spread":false},{"title":"dyn_gcn_ihm.csv <span style='color:#111;'> 17.72KB </span>","children":null,"spread":false},{"title":"lstmgnn_gat_los_no_diag.csv <span style='color:#111;'> 14.21KB </span>","children":null,"spread":false},{"title":"dyn_mpnn_los.csv <span style='color:#111;'> 14.10KB </span>","children":null,"spread":false},{"title":"ns_gat_ihm.csv <span style='color:#111;'> 13.87KB </span>","children":null,"spread":false},{"title":"lstmgnn_mpnn_los.csv <span style='color:#111;'> 15.95KB </span>","children":null,"spread":false},{"title":"lstmgnn_sage_los_no_diag.csv <span style='color:#111;'> 13.16KB </span>","children":null,"spread":false},{"title":"lstmgnn_gat_ihm_no_diag.csv <span style='color:#111;'> 17.27KB </span>","children":null,"spread":false},{"title":"ns_sage_los.csv <span style='color:#111;'> 7.71KB </span>","children":null,"spread":false},{"title":"lstmgnn_mpnn_los_no_diag.csv <span style='color:#111;'> 12.51KB </span>","children":null,"spread":false}],"spread":false},{"title":"train_ns_lstmgnn.py <span style='color:#111;'> 17.41KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 1.20KB </span>","children":null,"spread":false},{"title":"train_ns_lstm.py <span style='color:#111;'> 13.59KB </span>","children":null,"spread":false},{"title":"requirements要求.txt <span style='color:#111;'> 325B </span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明